These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34569624)

  • 21. A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics.
    Oftadeh O; Salvy P; Masid M; Curvat M; Miskovic L; Hatzimanikatis V
    Nat Commun; 2021 Aug; 12(1):4790. PubMed ID: 34373465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Next-Generation Genome-Scale Models Incorporating Multilevel 'Omics Data: From Yeast to Human.
    Çakır T; Kökrek E; Avşar G; Abdik E; Pir P
    Methods Mol Biol; 2019; 2049():347-363. PubMed ID: 31602621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism.
    Nookaew I; Jewett MC; Meechai A; Thammarongtham C; Laoteng K; Cheevadhanarak S; Nielsen J; Bhumiratana S
    BMC Syst Biol; 2008 Aug; 2():71. PubMed ID: 18687109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathway swapping: Toward modular engineering of essential cellular processes.
    Kuijpers NG; Solis-Escalante D; Luttik MA; Bisschops MM; Boonekamp FJ; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15060-15065. PubMed ID: 27956602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome scale models of yeast: towards standardized evaluation and consistent omic integration.
    Sánchez BJ; Nielsen J
    Integr Biol (Camb); 2015 Aug; 7(8):846-58. PubMed ID: 26079294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systems-level approach for metabolic engineering of yeast cell factories.
    Kim IK; Roldão A; Siewers V; Nielsen J
    FEMS Yeast Res; 2012 Mar; 12(2):228-48. PubMed ID: 22188344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From genomes to systems: the path with yeast.
    Oliver SG
    Philos Trans R Soc Lond B Biol Sci; 2006 Mar; 361(1467):477-82. PubMed ID: 16524836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species.
    Pitkänen E; Jouhten P; Hou J; Syed MF; Blomberg P; Kludas J; Oja M; Holm L; Penttilä M; Rousu J; Arvas M
    PLoS Comput Biol; 2014 Feb; 10(2):e1003465. PubMed ID: 24516375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast.
    Blank LM; Kuepfer L; Sauer U
    Genome Biol; 2005; 6(6):R49. PubMed ID: 15960801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    Ghosh A; Zhao H; Price ND
    PLoS One; 2011; 6(11):e27316. PubMed ID: 22076150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systems biology of lipid metabolism: from yeast to human.
    Nielsen J
    FEBS Lett; 2009 Dec; 583(24):3905-13. PubMed ID: 19854183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production.
    Agren R; Otero JM; Nielsen J
    J Ind Microbiol Biotechnol; 2013 Jul; 40(7):735-47. PubMed ID: 23608777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of metabolome data with metabolic networks reveals reporter reactions.
    Cakir T; Patil KR; Onsan Zi; Ulgen KO; Kirdar B; Nielsen J
    Mol Syst Biol; 2006; 2():50. PubMed ID: 17016516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathway Tools Visualization of Organism-Scale Metabolic Networks.
    Paley S; Billington R; Herson J; Krummenacker M; Karp PD
    Metabolites; 2021 Jan; 11(2):. PubMed ID: 33499002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts.
    Scott WT; Smid EJ; Block DE; Notebaart RA
    Microb Cell Fact; 2021 Oct; 20(1):204. PubMed ID: 34674718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks.
    Jensen PA; Lutz KA; Papin JA
    BMC Syst Biol; 2011 Sep; 5():147. PubMed ID: 21943338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emergence of Orchestrated and Dynamic Metabolism of
    Nguyen V; Li Y; Lu T
    ACS Synth Biol; 2024 May; 13(5):1442-1453. PubMed ID: 38657170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FCDECOMP: decomposition of metabolic networks based on flux coupling relations.
    Rezvan A; Marashi SA; Eslahchi C
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450028. PubMed ID: 25362842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.