These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34569853)

  • 21. Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay correlation structure.
    Li F
    Stat Med; 2020 Feb; 39(4):438-455. PubMed ID: 31797438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substantial risks associated with few clusters in cluster randomized and stepped wedge designs.
    Taljaard M; Teerenstra S; Ivers NM; Fergusson DA
    Clin Trials; 2016 Aug; 13(4):459-63. PubMed ID: 26940696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of unequal cluster sizes for GEE analyses of stepped wedge cluster randomized trials with binary outcomes.
    Tian Z; Preisser JS; Esserman D; Turner EL; Rathouz PJ; Li F
    Biom J; 2022 Mar; 64(3):419-439. PubMed ID: 34596912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sample size determination for GEE analyses of stepped wedge cluster randomized trials.
    Li F; Turner EL; Preisser JS
    Biometrics; 2018 Dec; 74(4):1450-1458. PubMed ID: 29921006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Five questions to consider before conducting a stepped wedge trial.
    Hargreaves JR; Copas AJ; Beard E; Osrin D; Lewis JJ; Davey C; Thompson JA; Baio G; Fielding KL; Prost A
    Trials; 2015 Aug; 16():350. PubMed ID: 26279013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of small-sample standard-error corrections for generalised estimating equations in stepped wedge cluster randomised trials with a binary outcome: A simulation study.
    Thompson JA; Hemming K; Forbes A; Fielding K; Hayes R
    Stat Methods Med Res; 2021 Feb; 30(2):425-439. PubMed ID: 32970526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An imbalance in cluster sizes does not lead to notable loss of power in cross-sectional, stepped-wedge cluster randomised trials with a continuous outcome.
    Kristunas CA; Smith KL; Gray LJ
    Trials; 2017 Mar; 18(1):109. PubMed ID: 28270224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative efficiency of unequal cluster sizes in stepped wedge and other trial designs under longitudinal or cross-sectional sampling.
    Girling AJ
    Stat Med; 2018 Dec; 37(30):4652-4664. PubMed ID: 30209812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generalized estimating equations in cluster randomized trials with a small number of clusters: Review of practice and simulation study.
    Huang S; Fiero MH; Bell ML
    Clin Trials; 2016 Aug; 13(4):445-9. PubMed ID: 27094487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and analysis of stepped wedge cluster randomized trials.
    Hussey MA; Hughes JP
    Contemp Clin Trials; 2007 Feb; 28(2):182-91. PubMed ID: 16829207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and analysis of a 2-year parallel follow-up of repeated ivermectin mass drug administrations for control of malaria: Small sample considerations for cluster-randomized trials with count data.
    Jackson CL; Colborn K; Gao D; Rao S; Slater HC; Parikh S; Foy BD; Kittelson J
    Clin Trials; 2021 Oct; 18(5):582-593. PubMed ID: 34218684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Admissible multiarm stepped-wedge cluster randomized trial designs.
    Grayling MJ; Mander AP; Wason JMS
    Stat Med; 2019 Mar; 38(7):1103-1119. PubMed ID: 30402914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A flexible sample size solution for longitudinal and crossover cluster randomized trials with continuous outcomes.
    Wang J; Cao J; Zhang S; Ahn C
    Contemp Clin Trials; 2021 Oct; 109():106543. PubMed ID: 34450326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Power calculation for analyses of cross-sectional stepped-wedge cluster randomized trials with binary outcomes via generalized estimating equations.
    Harrison LJ; Wang R
    Stat Med; 2021 Dec; 40(29):6674-6688. PubMed ID: 34558112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRTpowerdist: An R package to calculate attained power and construct the power distribution for cross-sectional stepped-wedge and parallel cluster randomized trials.
    Ouyang Y; Xu L; Karim ME; Gustafson P; Wong H
    Comput Methods Programs Biomed; 2021 Sep; 208():106255. PubMed ID: 34260969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Information content of stepped wedge designs with unequal cluster-period sizes in linear mixed models: Informing incomplete designs.
    Kasza J; Bowden R; Forbes AB
    Stat Med; 2021 Mar; 40(7):1736-1751. PubMed ID: 33438255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Power calculation for cross-sectional stepped wedge cluster randomized trials with variable cluster sizes.
    Harrison LJ; Chen T; Wang R
    Biometrics; 2020 Sep; 76(3):951-962. PubMed ID: 31625596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of stepped wedge cluster randomized trials in the presence of a time-varying treatment effect.
    Kenny A; Voldal EC; Xia F; Heagerty PJ; Hughes JP
    Stat Med; 2022 Sep; 41(22):4311-4339. PubMed ID: 35774016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cluster randomised crossover trials with binary data and unbalanced cluster sizes: application to studies of near-universal interventions in intensive care.
    Forbes AB; Akram M; Pilcher D; Cooper J; Bellomo R
    Clin Trials; 2015 Feb; 12(1):34-44. PubMed ID: 25475880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The optimal design of stepped wedge trials with equal allocation to sequences and a comparison to other trial designs.
    Thompson JA; Fielding K; Hargreaves J; Copas A
    Clin Trials; 2017 Dec; 14(6):639-647. PubMed ID: 28797179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.