BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34570102)

  • 1. In Situ Exploration of Murine Megakaryopoiesis using Transmission Electron Microscopy.
    Scandola C; Lanza F; Gachet C; Eckly A
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34570102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of megakaryocyte development in the native bone marrow environment.
    Eckly A; Strassel C; Cazenave JP; Lanza F; Léon C; Gachet C
    Methods Mol Biol; 2012; 788():175-92. PubMed ID: 22130708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand.
    Cramer EM; Norol F; Guichard J; Breton-Gorius J; Vainchenker W; Massé JM; Debili N
    Blood; 1997 Apr; 89(7):2336-46. PubMed ID: 9116277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The demarcation membrane system of the megakaryocyte: a misnomer?
    Radley JM; Haller CJ
    Blood; 1982 Jul; 60(1):213-9. PubMed ID: 7082839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunohistochemical localization of membrane and alpha-granule proteins in plastic-embedded mouse bone marrow megakaryocytes and murine megakaryocyte colonies.
    Stenberg PE; Beckstead JH; McEver RP; Levin J
    Blood; 1986 Sep; 68(3):696-702. PubMed ID: 2943332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of microtubules in vivo by vincristine induces large membrane complexes and other cytoplasmic abnormalities in megakaryocytes and platelets of normal rats like those in human and Wistar Furth rat hereditary macrothrombocytopenias.
    Stenberg PE; McDonald TP; Jackson CW
    J Cell Physiol; 1995 Jan; 162(1):86-102. PubMed ID: 7814453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proplatelet Formation Dynamics of Mouse Fresh Bone Marrow Explants.
    Guinard I; Lanza F; Gachet C; Léon C; Eckly A
    J Vis Exp; 2021 May; (171):. PubMed ID: 34096921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incomplete antigenic cross-reactivity between platelets and megakaryocytes: relevance to ITP.
    Stahl CP; Zucker-Franklin D; McDonald TP
    Blood; 1986 Feb; 67(2):421-8. PubMed ID: 3510680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parasinusoidal location of megakaryocytes in marrow: a determinant of platelet release.
    Lichtman MA; Chamberlain JK; Simon W; Santillo PA
    Am J Hematol; 1978; 4(4):303-12. PubMed ID: 717392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective alpha-granule production in megakaryocytes from gray platelet syndrome: ultrastructural studies of bone marrow cells and megakaryocytes growing in culture from blood precursors.
    Breton-Gorius J; Vainchenker W; Nurden A; Levy-Toledano S; Caen J
    Am J Pathol; 1981 Jan; 102(1):10-9. PubMed ID: 7468753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the maturation of megakaryocytes: a review with original observations on human in vivo cells emphasizing morphology and ultrastructure.
    Ru YX; Zhao SX; Dong SX; Yang YQ; Eyden B
    Ultrastruct Pathol; 2015 Apr; 39(2):79-87. PubMed ID: 25569023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning electron microscopic studies of megakaryocytes and platelet formation in the dog and rat.
    Handagama P; Jain NC; Kono CS; Feldman BF
    Am J Vet Res; 1986 Nov; 47(11):2454-60. PubMed ID: 3789509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural analysis of platelets and megakaryocytes from a dog with probable essential thrombocythemia.
    Tablin F; Jain NC; Mandell CP; Hopper PE; Zinkl JG
    Vet Pathol; 1989 Jul; 26(4):289-93. PubMed ID: 2763418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of transforming growth factor-beta 1 by megakaryocytes and its localization to megakaryocyte and platelet alpha-granules.
    Fava RA; Casey TT; Wilcox J; Pelton RW; Moses HL; Nanney LB
    Blood; 1990 Nov; 76(10):1946-55. PubMed ID: 2242422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypercholesterolemia impairs megakaryopoiesis and platelet production in scavenger receptor BI knockout mice.
    Ouweneel AB; Hoekstra M; van der Wel EJ; Schaftenaar FH; Snip OSC; Hassan J; Korporaal SJA; Van Eck M
    Atherosclerosis; 2019 Mar; 282():176-182. PubMed ID: 30278990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of imaging flow cytometry to define intermediates of megakaryopoiesis in vivo and in vitro.
    McGrath KE
    J Immunol Methods; 2015 Aug; 423():45-51. PubMed ID: 25795419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence Approaches to Image and Quantify the Demarcation Membrane System in Living Megakaryocytes.
    Osman S; Dalmay D; Mahaut-Smith M
    Methods Mol Biol; 2018; 1812():195-215. PubMed ID: 30171580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural megakaryocyte modifications after vanadium inhalation in spleen and bone marrow.
    Fortoul TI; González-Villalva A; Piñón-Zarate G; Rodríguez-Lara V; Montaño LF; Saldivar-Osorio L
    J Electron Microsc (Tokyo); 2009 Dec; 58(6):375-80. PubMed ID: 19567481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructural analysis of murine megakaryocyte maturation in vitro: comparison of big-cell and heterogeneous megakaryocyte colonies.
    Stenberg PE; Levin J
    Blood; 1987 Nov; 70(5):1509-18. PubMed ID: 3663944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets.
    Schmitt A; Guichard J; Massé JM; Debili N; Cramer EM
    Exp Hematol; 2001 Nov; 29(11):1295-302. PubMed ID: 11698125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.