These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 34570171)

  • 21. Large scale microbiome profiling in the cloud.
    Valdes C; Stebliankin V; Narasimhan G
    Bioinformatics; 2019 Jul; 35(14):i13-i22. PubMed ID: 31510682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PHIST: fast and accurate prediction of prokaryotic hosts from metagenomic viral sequences.
    Zielezinski A; Deorowicz S; Gudyś A
    Bioinformatics; 2022 Feb; 38(5):1447-1449. PubMed ID: 34904625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MIDAS2: Metagenomic Intra-species Diversity Analysis System.
    Zhao C; Dimitrov B; Goldman M; Nayfach S; Pollard KS
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36321886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metagenomic binning through low-density hashing.
    Luo Y; Yu YW; Zeng J; Berger B; Peng J
    Bioinformatics; 2019 Jan; 35(2):219-226. PubMed ID: 30010790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PhyloMagnet: fast and accurate screening of short-read meta-omics data using gene-centric phylogenetics.
    Schön ME; Eme L; Ettema TJG
    Bioinformatics; 2020 Mar; 36(6):1718-1724. PubMed ID: 31647547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. expam-high-resolution analysis of metagenomes using distance trees.
    Solari SM; Young RB; Marcelino VR; Forster SC
    Bioinformatics; 2022 Oct; 38(20):4814-4816. PubMed ID: 36029242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CSSSCL: a python package that uses combined sequence similarity scores for accurate taxonomic classification of long and short sequence reads.
    Borozan I; Ferretti V
    Bioinformatics; 2016 Feb; 32(3):453-5. PubMed ID: 26454281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ViBE: a hierarchical BERT model to identify eukaryotic viruses using metagenome sequencing data.
    Gwak HJ; Rho M
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35667011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DeepTE: a computational method for de novo classification of transposons with convolutional neural network.
    Yan H; Bombarely A; Li S
    Bioinformatics; 2020 Aug; 36(15):4269-4275. PubMed ID: 32415954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SCAPP: an algorithm for improved plasmid assembly in metagenomes.
    Pellow D; Zorea A; Probst M; Furman O; Segal A; Mizrahi I; Shamir R
    Microbiome; 2021 Jun; 9(1):144. PubMed ID: 34172093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-reconstruction for eukaryotes from complex natural microbial communities.
    West PT; Probst AJ; Grigoriev IV; Thomas BC; Banfield JF
    Genome Res; 2018 Apr; 28(4):569-580. PubMed ID: 29496730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phigaro: high-throughput prophage sequence annotation.
    Starikova EV; Tikhonova PO; Prianichnikov NA; Rands CM; Zdobnov EM; Ilina EN; Govorun VM
    Bioinformatics; 2020 Jun; 36(12):3882-3884. PubMed ID: 32311023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recovery of 197 eukaryotic bins reveals major challenges for eukaryote genome reconstruction from terrestrial metagenomes.
    Saraiva JP; Bartholomäus A; Toscan RB; Baldrian P; Nunes da Rocha U
    Mol Ecol Resour; 2023 Jul; 23(5):1066-1076. PubMed ID: 36847735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC.
    Saary P; Mitchell AL; Finn RD
    Genome Biol; 2020 Sep; 21(1):244. PubMed ID: 32912302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Snowball: strain aware gene assembly of metagenomes.
    Gregor I; Schönhuth A; McHardy AC
    Bioinformatics; 2016 Sep; 32(17):i649-i657. PubMed ID: 27587685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MeganServer: facilitating interactive access to metagenomic data on a server.
    Gautam A; Zeng W; Huson DH
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepSig: deep learning improves signal peptide detection in proteins.
    Savojardo C; Martelli PL; Fariselli P; Casadio R
    Bioinformatics; 2018 May; 34(10):1690-1696. PubMed ID: 29280997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indexed variation graphs for efficient and accurate resistome profiling.
    Rowe WPM; Winn MD
    Bioinformatics; 2018 Nov; 34(21):3601-3608. PubMed ID: 29762644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MOCAT2: a metagenomic assembly, annotation and profiling framework.
    Kultima JR; Coelho LP; Forslund K; Huerta-Cepas J; Li SS; Driessen M; Voigt AY; Zeller G; Sunagawa S; Bork P
    Bioinformatics; 2016 Aug; 32(16):2520-3. PubMed ID: 27153620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ganon: precise metagenomics classification against large and up-to-date sets of reference sequences.
    Piro VC; Dadi TH; Seiler E; Reinert K; Renard BY
    Bioinformatics; 2020 Jul; 36(Suppl_1):i12-i20. PubMed ID: 32657362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.