BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34570254)

  • 1. A DFT calculation on nonenzymatic degradation of isoaspartic residue.
    Sang-Aroon W; Phatchana R; Tontapha S; Ruangpornvisuti V
    J Mol Model; 2021 Sep; 27(10):300. PubMed ID: 34570254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation and semiquantitative analysis of an isoaspartic acid in human alpha-Crystallin by postsource decay in a curved field reflectron.
    Yamazaki Y; Fujii N; Sadakane Y; Fujii N
    Anal Chem; 2010 Aug; 82(15):6384-94. PubMed ID: 20669993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation.
    Cournoyer JJ; Pittman JL; Ivleva VB; Fallows E; Waskell L; Costello CE; O'Connor PB
    Protein Sci; 2005 Feb; 14(2):452-63. PubMed ID: 15659375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Side-chain conformers to allow conversion from normal to isoaspartate in age-related proteins and peptides.
    Aki K; Okamura E
    Biochim Biophys Acta Proteins Proteom; 2020 Nov; 1868(11):140483. PubMed ID: 32659262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective cleavage of isoaspartyl peptide bonds by hydroxylamine after methyltransferase priming.
    Zhu JX; Aswad DW
    Anal Biochem; 2007 May; 364(1):1-7. PubMed ID: 17376395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage.
    Aki K; Okamura E
    Sci Rep; 2016 Feb; 6():21594. PubMed ID: 26876027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomerization of Asp is essential for assembly of amyloid-like fibrils of αA-crystallin-derived peptide.
    Magami K; Hachiya N; Morikawa K; Fujii N; Takata T
    PLoS One; 2021; 16(4):e0250277. PubMed ID: 33857260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonenzymatic Posttranslational Modifications and Peptide Cleavages Observed in Peptide Epimers.
    Long CC; Antevska A; Mast DH; Okyem S; Sweedler JV; Do TD
    J Am Soc Mass Spectrom; 2023 Sep; 34(9):1898-1907. PubMed ID: 37102735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Asp isomerization in proteins by ¹⁸O labeling and tandem mass spectrometry.
    Zhang J; Katta V
    Methods Mol Biol; 2012; 899():365-77. PubMed ID: 22735965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PIMT-Mediated Labeling of l-Isoaspartic Acid with Tris Facilitates Identification of Isomerization Sites in Long-Lived Proteins.
    Silzel JW; Lambeth TR; Julian RR
    J Am Soc Mass Spectrom; 2022 Mar; 33(3):548-556. PubMed ID: 35113558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational studies on nonenzymatic succinimide-formation mechanisms of the aspartic acid residues catalyzed by two water molecules.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi H; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140459. PubMed ID: 32474105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of Aspartic and Isoaspartic Acid Residues in Peptides by Tandem Mass Spectrometry with Hydrogen Attachment Dissociation.
    Asakawa D; Iwamoto S; Tanaka K
    Anal Chem; 2024 May; 96(21):8552-8559. PubMed ID: 38741470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigation of the substrate recognition mechanism of protein D-aspartyl (L-isoaspartyl) O-methyltransferase by docking and molecular dynamics simulation studies and application to interpret size exclusion chromatography data.
    Noji I; Oda A; Kobayashi K; Takahashi O
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3310-6. PubMed ID: 21741329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening.
    Oda A; Noji I; Fukuyoshi S; Takahashi O
    J Pharm Biomed Anal; 2015 Dec; 116():116-22. PubMed ID: 25758062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study on isomerization and peptide bond cleavage at aspartic residue.
    Sang-aroon W; Ruangpornvisuti V
    J Mol Model; 2013 Sep; 19(9):3627-36. PubMed ID: 23754169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the activation energy barrier for succinimide formation from α- and β-aspartic acid residues obtained from density functional theory calculations.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):759-766. PubMed ID: 29305913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deamidation of -Asn-Gly- sequences during sample preparation for proteomics: Consequences for MALDI and HPLC-MALDI analysis.
    Krokhin OV; Antonovici M; Ens W; Wilkins JA; Standing KG
    Anal Chem; 2006 Sep; 78(18):6645-50. PubMed ID: 16970346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Damaged proteins bearing L-isoaspartyl residues and aging: a dynamic equilibrium between generation of isomerized forms and repair by PIMT.
    Desrosiers RR; Fanélus I
    Curr Aging Sci; 2011 Feb; 4(1):8-18. PubMed ID: 21204776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing deamidation in therapeutic immunoglobulin gamma (IgG1) by 'bottom-up' mass spectrometry with electron transfer dissociation.
    Mukherjee R; Adhikary L; Khedkar A; Iyer H
    Rapid Commun Mass Spectrom; 2010 Apr; 24(7):879-84. PubMed ID: 20196189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.