These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 34570384)
1. Investigation of textile dyeing effluent using activated sludge system to assess the removal efficiency. Malik A; Hussain M; Uddin F; Raza W; Hussain S; Habiba UE; Malik T; Ajmal Z Water Environ Res; 2021 Dec; 93(12):2931-2940. PubMed ID: 34570384 [TBL] [Abstract][Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. Anaerobic-aerobic treatment of high-strength and recalcitrant textile dyeing effluents. Yao HY; Guo H; Shen F; Li T; Show DY; Ling M; Yan YG; Show KY; Lee DJ Bioresour Technol; 2023 Jul; 379():129060. PubMed ID: 37075851 [TBL] [Abstract][Full Text] [Related]
4. Performance of aerobic granular sludge in different bioreactors. Zhao X; Chen Z; Shen J; Wang X Environ Technol; 2014; 35(5-8):938-44. PubMed ID: 24645477 [TBL] [Abstract][Full Text] [Related]
5. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Franca RD; Vieira A; Mata AM; Carvalho GS; Pinheiro HM; Lourenço ND Water Res; 2015 Nov; 85():327-36. PubMed ID: 26343991 [TBL] [Abstract][Full Text] [Related]
6. Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Pala A; Tokat E Water Res; 2002 Jun; 36(11):2920-5. PubMed ID: 12146882 [TBL] [Abstract][Full Text] [Related]
7. Performance of a high-rate membrane bioreactor for energy-efficient treatment of textile wastewater. Yilmaz T; Demir EK; Aşık G; Başaran ST; Cokgor E; Sözen S; Sahinkaya E J Environ Manage; 2024 May; 358():120845. PubMed ID: 38599093 [TBL] [Abstract][Full Text] [Related]
8. Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater. Costa JG; Paulo AMS; Amorim CL; Amaral AL; Castro PML; Ferreira EC; Mesquita DP Chemosphere; 2022 Mar; 291(Pt 2):132773. PubMed ID: 34742770 [TBL] [Abstract][Full Text] [Related]
9. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems. Lotito AM; De Sanctis M; Di Iaconi C; Bergna G Water Res; 2014 May; 54():337-46. PubMed ID: 24583525 [TBL] [Abstract][Full Text] [Related]
10. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater. Franca RDG; Ortigueira J; Pinheiro HM; Lourenço ND Water Sci Technol; 2017 Sep; 76(5-6):1188-1195. PubMed ID: 28876260 [TBL] [Abstract][Full Text] [Related]
11. Influence of different textile fibers on characterization of dyeing wastewater and final effluent. Dos Santos RF; Ramlow H; Dolzan N; Machado RAF; de Aguiar CRL; Marangoni C Environ Monit Assess; 2018 Oct; 190(11):693. PubMed ID: 30382411 [TBL] [Abstract][Full Text] [Related]
12. Microbiological and performance evaluation of sequencing batch reactor for textile wastewater treatment. Ogleni N; Arifoglu YD; Ileri R Water Environ Res; 2012 Apr; 84(4):346-53. PubMed ID: 22834223 [TBL] [Abstract][Full Text] [Related]
13. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand. Liang J; Ning XA; Sun J; Song J; Lu J; Cai H; Hong Y Ecotoxicol Environ Saf; 2018 Dec; 166():56-62. PubMed ID: 30245294 [TBL] [Abstract][Full Text] [Related]
14. Reduction of adsorbed dyes content in the discharged sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process. Haddad M; Abid S; Hamdi M; Bouallagui H J Environ Manage; 2018 Oct; 223():936-946. PubMed ID: 30007889 [TBL] [Abstract][Full Text] [Related]
15. [Process Optimization of Aerobic Granular Sludge Continuous-Flow System for the Treatment of Low COD/N Ratio Sewage]. Lu L; Xin X; Lu H; Zhu LD; Xie SJ; Wu Y Huan Jing Ke Xue; 2015 Oct; 36(10):3778-85. PubMed ID: 26841612 [TBL] [Abstract][Full Text] [Related]
16. Influence of hydraulic retention time in a two-phase upflow anaerobic sludge blanket reactor treating textile dyeing effluent using sago effluent as the co-substrate. Senthilkumar M; Gnanapragasam G; Arutchelvan V; Nagarajan S Environ Sci Pollut Res Int; 2011 May; 18(4):649-54. PubMed ID: 21063797 [TBL] [Abstract][Full Text] [Related]
17. Recalcitrant organic matter removal from textile wastewater by an aerobic cell-immobilized pellet column. Kim M; Han D; Cui F; Bae W Water Sci Technol; 2013; 67(9):2124-31. PubMed ID: 23656958 [TBL] [Abstract][Full Text] [Related]
18. Effects of high-concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater. Cetin E; Karakas E; Dulekgurgen E; Ovez S; Kolukirik M; Yilmaz G Water Res; 2018 Mar; 131():74-89. PubMed ID: 29275102 [TBL] [Abstract][Full Text] [Related]
19. Wastewater treatment plant performance assessment using time-function-based effluent quality index and multiple regression models: the case of Bahir Dar textile factory. Wondim TT; Dzwairo RB; Aklog D; Janka E; Samarakoon G; Dereseh MM Environ Monit Assess; 2023 Oct; 195(11):1360. PubMed ID: 37870654 [TBL] [Abstract][Full Text] [Related]
20. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater. Couto CF; Marques LS; Balmant J; de Oliveira Maia AP; Moravia WG; Santos Amaral MC Environ Technol; 2018 Mar; 39(6):725-738. PubMed ID: 28338418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]