These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34570431)

  • 21. Network Building with the Cytoscape BioGateway App Explained in Five Use Cases.
    Puig RR; Holmås S; Mironov V; Kuiper M
    Curr Protoc Bioinformatics; 2020 Dec; 72(1):e106. PubMed ID: 32986267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. XlinkCyNET: A Cytoscape Application for Visualization of Protein Interaction Networks Based on Cross-Linking Mass Spectrometry Identifications.
    Lima DB; Zhu Y; Liu F
    J Proteome Res; 2021 Apr; 20(4):1943-1950. PubMed ID: 33689356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytoscape tools for the web age: D3.js and Cytoscape.js exporters.
    Ono K; Demchak B; Ideker T
    F1000Res; 2014; 3():143. PubMed ID: 25520778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding the Perseus Software for Omics Data Analysis With Custom Plugins.
    Yu SH; Ferretti D; Schessner JP; Rudolph JD; Borner GHH; Cox J
    Curr Protoc Bioinformatics; 2020 Sep; 71(1):e105. PubMed ID: 32931150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support.
    Abouelhoda M; Issa SA; Ghanem M
    BMC Bioinformatics; 2012 May; 13():77. PubMed ID: 22559942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytoscape.js: a graph theory library for visualisation and analysis.
    Franz M; Lopes CT; Huck G; Dong Y; Sumer O; Bader GD
    Bioinformatics; 2016 Jan; 32(2):309-11. PubMed ID: 26415722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simplifying the development of portable, scalable, and reproducible workflows.
    Piccolo SR; Ence ZE; Anderson EC; Chang JT; Bild AH
    Elife; 2021 Oct; 10():. PubMed ID: 34643507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Streamlining data-intensive biology with workflow systems.
    Reiter T; Brooks PT; Irber L; Joslin SEK; Reid CM; Scott C; Brown CT; Pierce-Ward NT
    Gigascience; 2021 Jan; 10(1):. PubMed ID: 33438730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis.
    Chong J; Wishart DS; Xia J
    Curr Protoc Bioinformatics; 2019 Dec; 68(1):e86. PubMed ID: 31756036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud.
    Wolstencroft K; Haines R; Fellows D; Williams A; Withers D; Owen S; Soiland-Reyes S; Dunlop I; Nenadic A; Fisher P; Bhagat J; Belhajjame K; Bacall F; Hardisty A; Nieva de la Hidalga A; Balcazar Vargas MP; Sufi S; Goble C
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W557-61. PubMed ID: 23640334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BioModels.net Web Services, a free and integrated toolkit for computational modelling software.
    Li C; Courtot M; Le Novère N; Laibe C
    Brief Bioinform; 2010 May; 11(3):270-7. PubMed ID: 19939940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Firegoose: two-way integration of diverse data from different bioinformatics web resources with desktop applications.
    Bare JC; Shannon PT; Schmid AK; Baliga NS
    BMC Bioinformatics; 2007 Nov; 8():456. PubMed ID: 18021453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ballaxy: web services for structural bioinformatics.
    Hildebrandt AK; Stöckel D; Fischer NM; de la Garza L; Krüger J; Nickels S; Röttig M; Schärfe C; Schumann M; Thiel P; Lenhof HP; Kohlbacher O; Hildebrandt A
    Bioinformatics; 2015 Jan; 31(1):121-2. PubMed ID: 25183489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BioServices: a common Python package to access biological Web Services programmatically.
    Cokelaer T; Pultz D; Harder LM; Serra-Musach J; Saez-Rodriguez J
    Bioinformatics; 2013 Dec; 29(24):3241-2. PubMed ID: 24064416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pySBOL: A Python Package for Genetic Design Automation and Standardization.
    Bartley BA; Choi K; Samineni M; Zundel Z; Nguyen T; Myers CJ; Sauro HM
    ACS Synth Biol; 2019 Jul; 8(7):1515-1518. PubMed ID: 30424601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and use of a Cytoscape app for GRNCOP2.
    Díaz-Montaña JJ; Díaz-Díaz N; Barranco CD; Ponzoni I
    Comput Methods Programs Biomed; 2019 Aug; 177():211-218. PubMed ID: 31319950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sim2Ls: FAIR simulation workflows and data.
    Hunt M; Clark S; Mejia D; Desai S; Strachan A
    PLoS One; 2022; 17(3):e0264492. PubMed ID: 35271613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A lightweight, flow-based toolkit for parallel and distributed bioinformatics pipelines.
    Cieślik M; Mura C
    BMC Bioinformatics; 2011 Feb; 12():61. PubMed ID: 21352538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Support for Taverna workflows in the VPH-Share cloud platform.
    Kasztelnik M; Coto E; Bubak M; Malawski M; Nowakowski P; Arenas J; Saglimbeni A; Testi D; Frangi AF
    Comput Methods Programs Biomed; 2017 Jul; 146():37-46. PubMed ID: 28688488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From the desktop to the grid: scalable bioinformatics via workflow conversion.
    de la Garza L; Veit J; Szolek A; Röttig M; Aiche S; Gesing S; Reinert K; Kohlbacher O
    BMC Bioinformatics; 2016 Mar; 17():127. PubMed ID: 26968893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.