These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 34570489)

  • 1. Directed Signaling Cascades in Monodisperse Artificial Eukaryotic Cells.
    Shetty SC; Yandrapalli N; Pinkwart K; Krafft D; Vidakovic-Koch T; Ivanov I; Robinson T
    ACS Nano; 2021 Oct; 15(10):15656-15666. PubMed ID: 34570489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivesicular droplets: a cell model system to study compartmentalised biochemical reactions.
    Nuti N; Verboket PE; Dittrich PS
    Lab Chip; 2017 Sep; 17(18):3112-3119. PubMed ID: 28813055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Assembly of Monodisperse Vesosomes as Artificial Cell Models.
    Deng NN; Yelleswarapu M; Zheng L; Huck WT
    J Am Chem Soc; 2017 Jan; 139(2):587-590. PubMed ID: 27978623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes.
    Paleos CM; Pantos A
    Acc Chem Res; 2014 May; 47(5):1475-82. PubMed ID: 24735049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bottom-Up Assembly of Functional Intracellular Synthetic Organelles by Droplet-Based Microfluidics.
    Staufer O; Schröter M; Platzman I; Spatz JP
    Small; 2020 Jul; 16(27):e1906424. PubMed ID: 32078238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartments for Synthetic Cells: Osmotically Assisted Separation of Oil from Double Emulsions in a Microfluidic Chip.
    Krafft D; López Castellanos S; Lira RB; Dimova R; Ivanov I; Sundmacher K
    Chembiochem; 2019 Oct; 20(20):2604-2608. PubMed ID: 31090995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.
    Elani Y
    Biochem Soc Trans; 2016 Jun; 44(3):723-30. PubMed ID: 27284034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monodisperse Uni- and Multicompartment Liposomes.
    Deng NN; Yelleswarapu M; Huck WT
    J Am Chem Soc; 2016 Jun; 138(24):7584-91. PubMed ID: 27243596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-Free Gene Expression Dynamics in Synthetic Cell Populations.
    Gonzales DT; Yandrapalli N; Robinson T; Zechner C; Tang TD
    ACS Synth Biol; 2022 Jan; 11(1):205-215. PubMed ID: 35057626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells.
    Göpfrich K; Platzman I; Spatz JP
    Trends Biotechnol; 2018 Sep; 36(9):938-951. PubMed ID: 29685820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Cells: Synthetic Compartments with Life-like Functionality and Adaptivity.
    Buddingh' BC; van Hest JCM
    Acc Chem Res; 2017 Apr; 50(4):769-777. PubMed ID: 28094501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways.
    Elani Y; Law RV; Ces O
    Nat Commun; 2014 Oct; 5():5305. PubMed ID: 25351716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicle-based artificial cells: materials, construction methods and applications.
    Lu Y; Allegri G; Huskens J
    Mater Horiz; 2022 Mar; 9(3):892-907. PubMed ID: 34908080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape and Size Control of Artificial Cells for Bottom-Up Biology.
    Fanalista F; Birnie A; Maan R; Burla F; Charles K; Pawlik G; Deshpande S; Koenderink GH; Dogterom M; Dekker C
    ACS Nano; 2019 May; 13(5):5439-5450. PubMed ID: 31074603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Signal Communication between Two Protoorganelles in a Lipid-Based Artificial Cell.
    Li S; Wang X; Mu W; Han X
    Anal Chem; 2019 May; 91(10):6859-6864. PubMed ID: 31020837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Controlled Coacervate-Membrane Interactions within Liposomes.
    Last MGF; Deshpande S; Dekker C
    ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review.
    Robinson T
    Adv Biosyst; 2019 Jun; 3(6):e1800318. PubMed ID: 32648705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocells Featuring Membrane-Bound and Dynamic Membraneless Organelles.
    Schvartzman C; Ibarboure E; Martin A; Garanger E; Mutschler A; Lecommandoux S
    Biomacromolecules; 2024 Jul; 25(7):4087-4094. PubMed ID: 38828905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Control of Functional Coacervates in Synthetic Cells.
    Nair KS; Radhakrishnan S; Bajaj H
    ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.