These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34570493)

  • 1. NMR Relaxation Rates of Quadrupolar Aqueous Ions from Classical Molecular Dynamics Using Force-Field Specific Sternheimer Factors.
    Chubak I; Scalfi L; Carof A; Rotenberg B
    J Chem Theory Comput; 2021 Oct; 17(10):6006-6017. PubMed ID: 34570493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadrupolar NMR Relaxation of Aqueous
    Philips A; Autschbach J
    J Chem Theory Comput; 2020 Sep; 16(9):5835-5844. PubMed ID: 32786904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Chem Phys; 2015 Nov; 143(19):194504. PubMed ID: 26590539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate quadrupolar NMR relaxation rates of aqueous cations from classical molecular dynamics.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Phys Chem B; 2014 Nov; 118(46):13252-7. PubMed ID: 25340813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of electric field gradient fluctuations and dynamics around sodium ions in ionic liquids.
    Gimbal-Zofka Y; Karg B; Dziubinska-Kühn K; Kowalska M; Wesolowski TA; Rumble CA
    J Chem Phys; 2022 Dec; 157(24):244502. PubMed ID: 36586985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quadrupolar NMR Spin Relaxation Calculated Using Ab Initio Molecular Dynamics: Group 1 and Group 17 Ions in Aqueous Solution.
    Badu S; Truflandier L; Autschbach J
    J Chem Theory Comput; 2013 Sep; 9(9):4074-86. PubMed ID: 26592401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quadrupolar
    Philips A; Marchenko A; Ducati LC; Autschbach J
    J Chem Theory Comput; 2019 Jan; 15(1):509-519. PubMed ID: 30462503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadrupolar NMR Relaxation from ab Initio Molecular Dynamics: Improved Sampling and Cluster Models versus Periodic Calculations.
    Philips A; Marchenko A; Truflandier LA; Autschbach J
    J Chem Theory Comput; 2017 Sep; 13(9):4397-4409. PubMed ID: 28719202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective water dynamics in the first solvation shell drive the NMR relaxation of aqueous quadrupolar cations.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Chem Phys; 2016 Sep; 145(12):124508. PubMed ID: 27782645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantum mechanics/molecular dynamics study of electric field gradient fluctuations in the liquid phase. The case of Na+ in aqueous solution.
    Aidas K; Ågren H; Kongsted J; Laaksonen A; Mocci F
    Phys Chem Chem Phys; 2013 Feb; 15(5):1621-31. PubMed ID: 23247548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quadrupolar
    Chubak I; Alon L; Silletta EV; Madelin G; Jerschow A; Rotenberg B
    Nat Commun; 2023 Jan; 14(1):84. PubMed ID: 36604414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can simple 'molecular' corrections outperform projector augmented-wave density functional theory in the prediction of
    Widdifield CM; Zakeri F
    Magn Reson Chem; 2024 Mar; 62(3):156-168. PubMed ID: 37950622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state (185/187)Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: chemical shift anisotropy, NMR crystallography, and a metal-metal bond.
    Widdifield CM; Perras FA; Bryce DL
    Phys Chem Chem Phys; 2015 Apr; 17(15):10118-34. PubMed ID: 25790263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Modeling of Ion Transport in Bulk and through a Nanopore Using the Drude Polarizable Force Field.
    Prajapati JD; Mele C; Aksoyoglu MA; Winterhalter M; Kleinekathöfer U
    J Chem Inf Model; 2020 Jun; 60(6):3188-3203. PubMed ID: 32479082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of multinuclear magnetic resonance and gauge-including projector-augmented-wave calculations to the study of solid group 13 chlorides.
    Chapman RP; Bryce DL
    Phys Chem Chem Phys; 2009 Aug; 11(32):6987-98. PubMed ID: 19652833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio calculation of the potential of mean force for dissociation of aqueous Ca-Cl.
    Timko J; De Castro A; Kuyucak S
    J Chem Phys; 2011 May; 134(20):204510. PubMed ID: 21639459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field.
    Yu H; Whitfield TW; Harder E; Lamoureux G; Vorobyov I; Anisimov VM; Mackerell AD; Roux B
    J Chem Theory Comput; 2010; 6(3):774-786. PubMed ID: 20300554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Force Field Development for Aqueous Electrolytes: 2. Polarizable Models Incorporating Crystalline Chemical Potential and Their Accurate Simulations of Halite, Hydrohalite, Aqueous Solutions of NaCl, and Solubility.
    Dočkal J; Lísal M; Moučka F
    J Chem Theory Comput; 2020 Jun; 16(6):3677-3688. PubMed ID: 32396723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersion-Corrected DFT Methods for Applications in Nuclear Magnetic Resonance Crystallography.
    Holmes ST; Vojvodin CS; Schurko RW
    J Phys Chem A; 2020 Dec; 124(49):10312-10323. PubMed ID: 33259216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking polarizable and non-polarizable force fields for Ca
    Amin KS; Hu X; Salahub DR; Baldauf C; Lim C; Noskov S
    J Chem Phys; 2020 Oct; 153(14):144102. PubMed ID: 33086838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.