These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34570498)

  • 21. Structure-Based Kinase Profiling To Understand the Polypharmacological Behavior of Therapeutic Molecules.
    Dutta D; Das R; Mandal C; Mandal C
    J Chem Inf Model; 2018 Jan; 58(1):68-89. PubMed ID: 29243930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LigAdvisor: a versatile and user-friendly web-platform for drug design.
    Pinzi L; Tinivella A; Gagliardelli L; Beneventano D; Rastelli G
    Nucleic Acids Res; 2021 Jul; 49(W1):W326-W335. PubMed ID: 34023895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do not hesitate to use Tversky-and other hints for successful active analogue searches with feature count descriptors.
    Horvath D; Marcou G; Varnek A
    J Chem Inf Model; 2013 Jul; 53(7):1543-62. PubMed ID: 23731338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MOST: most-similar ligand based approach to target prediction.
    Huang T; Mi H; Lin CY; Zhao L; Zhong LL; Liu FB; Zhang G; Lu AP; Bian ZX;
    BMC Bioinformatics; 2017 Mar; 18(1):165. PubMed ID: 28284192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt window.
    Koutsoukas A; Lowe R; Kalantarmotamedi Y; Mussa HY; Klaffke W; Mitchell JB; Glen RC; Bender A
    J Chem Inf Model; 2013 Aug; 53(8):1957-66. PubMed ID: 23829430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Updates to Binding MOAD (Mother of All Databases): Polypharmacology Tools and Their Utility in Drug Repurposing.
    Smith RD; Clark JJ; Ahmed A; Orban ZJ; Dunbar JB; Carlson HA
    J Mol Biol; 2019 Jun; 431(13):2423-2433. PubMed ID: 31125569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicted Biological Activity of Purchasable Chemical Space.
    Irwin JJ; Gaskins G; Sterling T; Mysinger MM; Keiser MJ
    J Chem Inf Model; 2018 Jan; 58(1):148-164. PubMed ID: 29193970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drugs Polypharmacology by In Silico Methods: New Opportunities in Drug Discovery.
    Lauria A; Bonsignore R; Bartolotta R; Perricone U; Martorana A; Gentile C
    Curr Pharm Des; 2016; 22(21):3073-81. PubMed ID: 26907944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing a Query Compound with Drug Target Classes Using 3D-Chemical Similarity.
    Lee SH; Ahn S; Kim MH
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32545691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Addressing selective polypharmacology of antipsychotic drugs targeting the bioaminergic receptors through receptor dynamic conformational ensembles.
    Selvam B; Porter SL; Tikhonova IG
    J Chem Inf Model; 2013 Jul; 53(7):1761-74. PubMed ID: 23789628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform.
    Chopra G; Samudrala R
    Curr Pharm Des; 2016; 22(21):3109-23. PubMed ID: 27013226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. KinomeX: a web application for predicting kinome-wide polypharmacology effect of small molecules.
    Li Z; Li X; Liu X; Fu Z; Xiong Z; Wu X; Tan X; Zhao J; Zhong F; Wan X; Luo X; Chen K; Jiang H; Zheng M
    Bioinformatics; 2019 Dec; 35(24):5354-5356. PubMed ID: 31228181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances in In Silico Target Fishing.
    Galati S; Di Stefano M; Martinelli E; Poli G; Tuccinardi T
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polypharmacology or Promiscuity? Structural Interactions of Resveratrol With Its Bandwagon of Targets.
    Saqib U; Kelley TT; Panguluri SK; Liu D; Savai R; Baig MS; Schürer SC
    Front Pharmacol; 2018; 9():1201. PubMed ID: 30405416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. QuartataWeb: Integrated Chemical-Protein-Pathway Mapping for Polypharmacology and Chemogenomics.
    Li H; Pei F; Taylor DL; Bahar I
    Bioinformatics; 2020 Jun; 36(12):3935-3937. PubMed ID: 32221612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive assessment of NR ligand polypharmacology by a multiplex reporter NR assay.
    Medvedev A; Moeser M; Medvedeva L; Martsen E; Granick A; Raines L; Gorman K; Lin B; Zeng M; Houck KA; Makarov SS
    Sci Rep; 2022 Feb; 12(1):3115. PubMed ID: 35210493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. mRAISE: an alternative algorithmic approach to ligand-based virtual screening.
    von Behren MM; Bietz S; Nittinger E; Rarey M
    J Comput Aided Mol Des; 2016 Aug; 30(8):583-94. PubMed ID: 27565795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual drug screen schema based on multiview similarity integration and ranking aggregation.
    Kang H; Sheng Z; Zhu R; Huang Q; Liu Q; Cao Z
    J Chem Inf Model; 2012 Mar; 52(3):834-43. PubMed ID: 22332590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coping with polypharmacology by computational medicinal chemistry.
    Schneider G; Reker D; Rodrigues T; Schneider P
    Chimia (Aarau); 2014 Sep; 68(9):648-53. PubMed ID: 25437786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.