These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34570883)
1. Establishment of a bovine rumen epithelial cell line. Ji X; Tong H; Settlage R; Yao W; Jiang H J Anim Sci; 2021 Oct; 99(10):. PubMed ID: 34570883 [TBL] [Abstract][Full Text] [Related]
2. Effect of starter diet supplementation on rumen epithelial morphology and expression of genes involved in cell proliferation and metabolism in pre-weaned lambs. Sun DM; Mao SY; Zhu WY; Liu JH Animal; 2018 Nov; 12(11):2274-2283. PubMed ID: 29477152 [TBL] [Abstract][Full Text] [Related]
3. Infusion of sodium butyrate promotes rumen papillae growth and enhances expression of genes related to rumen epithelial VFA uptake and metabolism in neonatal twin lambs. Liu L; Sun D; Mao S; Zhu W; Liu J J Anim Sci; 2019 Feb; 97(2):909-921. PubMed ID: 30535158 [TBL] [Abstract][Full Text] [Related]
5. Reticulo-rumen mass, epithelium gene expression, and systemic biomarkers of metabolism and inflammation in Holstein dairy cows fed a high-energy diet. Arroyo JM; Hosseini A; Zhou Z; Alharthi A; Trevisi E; Osorio JS; Loor JJ J Dairy Sci; 2017 Nov; 100(11):9352-9360. PubMed ID: 28918137 [TBL] [Abstract][Full Text] [Related]
6. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells. Gao X; Oba M J Dairy Sci; 2016 Nov; 99(11):8733-8745. PubMed ID: 27638257 [TBL] [Abstract][Full Text] [Related]
7. Abundance of ruminal bacteria, epithelial gene expression, and systemic biomarkers of metabolism and inflammation are altered during the peripartal period in dairy cows. Minuti A; Palladino A; Khan MJ; Alqarni S; Agrawal A; Piccioli-Capelli F; Hidalgo F; Cardoso FC; Trevisi E; Loor JJ J Dairy Sci; 2015 Dec; 98(12):8940-51. PubMed ID: 26409956 [TBL] [Abstract][Full Text] [Related]
8. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats. Yan L; Zhang B; Shen Z J Dairy Sci; 2014 Sep; 97(9):5668-75. PubMed ID: 24996270 [TBL] [Abstract][Full Text] [Related]
9. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. Aschenbach JR; Zebeli Q; Patra AK; Greco G; Amasheh S; Penner GB J Dairy Sci; 2019 Feb; 102(2):1866-1882. PubMed ID: 30580938 [TBL] [Abstract][Full Text] [Related]
11. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows. Storm AC; Kristensen NB; Hanigan MD J Dairy Sci; 2012 Jun; 95(6):2919-34. PubMed ID: 22612930 [TBL] [Abstract][Full Text] [Related]
12. Short-Chain Fatty Acids Regulate the Immune Responses via G Protein-Coupled Receptor 41 in Bovine Rumen Epithelial Cells. Zhan K; Gong X; Chen Y; Jiang M; Yang T; Zhao G Front Immunol; 2019; 10():2042. PubMed ID: 31555273 [TBL] [Abstract][Full Text] [Related]
13. Effects of grain processing methods on the expression of genes involved in volatile fatty acid transport and pH regulation, and keratinization in rumen epithelium of beef cattle. Del Bianco Benedeti P; Silva BC; Pacheco MVC; Serão NVL; Carvalho Filho I; Lopes MM; Marcondes MI; Mantovani HC; Valadares Filho SC; Detmann E; Duarte MS PLoS One; 2018; 13(6):e0198963. PubMed ID: 29902237 [TBL] [Abstract][Full Text] [Related]
14. Subacute ruminal acidosis suppressed the expression of MCT1 in rumen of cows. Zhao C; Wang Y; Peng Z; Sun X; Sun G; Yuan X; Li X; Liu G J Cell Physiol; 2019 Jul; 234(7):11734-11745. PubMed ID: 30536938 [TBL] [Abstract][Full Text] [Related]
15. Adaptive responses in short-chain fatty acid absorption, gene expression, and bacterial community of the bovine rumen epithelium recovered from a continuous or transient high-grain feeding. Petri RM; Wetzels SU; Qumar M; Khiaosa-Ard R; Zebeli Q J Dairy Sci; 2019 Jun; 102(6):5361-5378. PubMed ID: 31005320 [TBL] [Abstract][Full Text] [Related]
16. Activation of volatile fatty acids in bovine liver and rumen epithelium. Evidence for control by autoregulation. Ash R; Baird GD Biochem J; 1973 Oct; 136(2):311-9. PubMed ID: 4359516 [TBL] [Abstract][Full Text] [Related]
17. Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. Naeem A; Drackley JK; Stamey J; Loor JJ J Dairy Sci; 2012 Apr; 95(4):1807-20. PubMed ID: 22459829 [TBL] [Abstract][Full Text] [Related]
18. Propionate and butyrate induce gene expression of monocarboxylate transporter 4 and cluster of differentiation 147 in cultured rumen epithelial cells derived from preweaning dairy calves. Nakamura S; Haga S; Kimura K; Matsuyama S J Anim Sci; 2018 Nov; 96(11):4902-4911. PubMed ID: 30215729 [TBL] [Abstract][Full Text] [Related]
19. Transport of sodium across the isolated bovine rumen epithelium: interaction with short-chain fatty acids, chloride and bicarbonate. Sehested J; Diernaes L; Moller PD; Skadhauge E Exp Physiol; 1996 Jan; 81(1):79-94. PubMed ID: 8869141 [TBL] [Abstract][Full Text] [Related]
20. Effect of butyrate infusion into the rumen on butyrate flow to the duodenum, selected gene expression in the duodenum epithelium, and nutrient digestion in sheep. Górka P; Śliwiński B; Flaga J; Wieczorek J; Godlewski MM; Wierzchoś E; Zabielski R; Kowalski ZM J Anim Sci; 2017 May; 95(5):2144-2155. PubMed ID: 28726987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]