These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34571133)

  • 1. Understanding Heat Transfer During the Secondary Drying Stage of Freeze Drying: Current Practice and Knowledge Gaps.
    Yoon K; Narsimhan V
    J Pharm Sci; 2022 Feb; 111(2):368-381. PubMed ID: 34571133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of vial heat transfer coefficients during the primary and secondary drying stages of freeze-drying.
    Yoon K; Narsimhan V
    Int J Pharm; 2023 Mar; 635():122746. PubMed ID: 36812952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the design of the stopper including dimension, type, and vent area on lyophilization process.
    Mungikar A; Ludzinski M; Kamat M
    PDA J Pharm Sci Technol; 2010; 64(6):507-16. PubMed ID: 21502061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LyoPRONTO: an Open-Source Lyophilization Process Optimization Tool.
    Shivkumar G; Kazarin PS; Strongrich AD; Alexeenko AA
    AAPS PharmSciTech; 2019 Oct; 20(8):328. PubMed ID: 31673810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scale-Up Procedure for Primary Drying Process in Lyophilizer by Using the Vial Heat Transfer and the Drying Resistance.
    Kawasaki H; Shimanouchi T; Yamamoto M; Takahashi K; Kimura Y
    Chem Pharm Bull (Tokyo); 2018; 66(11):1048-1056. PubMed ID: 30381657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Mini-Freeze Dryer for Material-Sparing Laboratory Processing with Representative Product Temperature History.
    Obeidat WM; Sahni E; Kessler W; Pikal M
    AAPS PharmSciTech; 2018 Feb; 19(2):599-609. PubMed ID: 28905327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Model-Based Approach for the Development of Freeze-Drying Cycles Using a Small-Scale Freeze-Dryer.
    Massei A; Fissore D
    J Pharm Sci; 2023 Aug; 112(8):2176-2189. PubMed ID: 37211317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Natural Variations in Freeze-Drying Parameters on Product Temperature History: Application of Quasi Steady-State Heat and Mass Transfer and Simple Statistics.
    Pikal MJ; Pande P; Bogner R; Sane P; Mudhivarthi V; Sharma P
    AAPS PharmSciTech; 2018 Oct; 19(7):2828-2842. PubMed ID: 30259404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing a Multi-Vial Design Space for the Freeze-Drying Process by Means of Mathematical Modeling of the Primary Drying Stage.
    Pérez R; Alvarez MA; Acosta LL; Terry AM; Labrada A
    J Pharm Sci; 2024 Jun; 113(6):1506-1514. PubMed ID: 38342340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vial Wall Effect on Freeze-Drying Speed.
    Ramšak M; Hriberšek M
    J Pharm Sci; 2024 May; 113(5):1275-1284. PubMed ID: 38070773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.
    Tang XC; Nail SL; Pikal MJ
    Pharm Res; 2005 Apr; 22(4):685-700. PubMed ID: 15889467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of freeze-drying cycles: The determination of heat transfer coefficient by using heat flux sensor and MicroFD.
    Carfagna M; Rosa M; Hawe A; Frieß W
    Int J Pharm; 2022 Jun; 621():121763. PubMed ID: 35472509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.
    Bosca S; Barresi AA; Fissore D
    Int J Pharm; 2013 Jul; 451(1-2):23-33. PubMed ID: 23624086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Headspace Moisture Mapping and the Information That Can Be Gained about Freeze-Dried Materials and Processes.
    Cook IA; Ward KR
    PDA J Pharm Sci Technol; 2011; 65(5):457-67. PubMed ID: 22293835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Freeze Dryer Design on Heat Transfer Variability Investigated Using a 3D Mathematical Model.
    Scutellà B; Bourlès E; Plana-Fattori A; Fonseca F; Flick D; Trelea IC; Passot S
    J Pharm Sci; 2018 Aug; 107(8):2098-2106. PubMed ID: 29665380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Freeze-Drying Cycles for Pharmaceutical Products Using a Micro Freeze-Dryer.
    Fissore D; Harguindeguy M; Ramirez DV; Thompson TN
    J Pharm Sci; 2020 Jan; 109(1):797-806. PubMed ID: 31678249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity.
    Yu T; Marx R; Hinds M; Schott N; Gong E; Yoon S; Kessler W
    AAPS PharmSciTech; 2024 Oct; 25(8):245. PubMed ID: 39419936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.