These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 34571296)

  • 21. Nature-Inspired Design of Nano-Architecture-Aligned Ni
    Attarzadeh N; Das D; Chintalapalle SN; Tan S; Shutthanandan V; Ramana CV
    ACS Appl Mater Interfaces; 2023 May; 15(18):22036-22050. PubMed ID: 37099741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting.
    Wang J; Cui W; Liu Q; Xing Z; Asiri AM; Sun X
    Adv Mater; 2016 Jan; 28(2):215-30. PubMed ID: 26551487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging transition metal and carbon nanomaterial hybrids as electrocatalysts for water splitting: a brief review.
    Muzammil A; Haider R; Wei W; Wan Y; Ishaq M; Zahid M; Yaseen W; Yuan X
    Mater Horiz; 2023 Jul; 10(8):2764-2799. PubMed ID: 37194395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus doping and phosphates coating for nickel molybdate/nickel molybdate hydrate enabling efficient overall water splitting.
    Jiang R; Zhao D; Fan H; Xie Y; Li M; Lin H; Wu ZS
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):384-392. PubMed ID: 34392033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts.
    Chang H; Liang Z; Wang L; Wang C
    Nanoscale; 2022 Apr; 14(15):5639-5656. PubMed ID: 35333268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ru doping boosts electrocatalytic water splitting.
    Yang X; Liu Y; Guo R; Xiao J
    Dalton Trans; 2022 Aug; 51(30):11208-11225. PubMed ID: 35730677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Multilevel Collaborative Catalytic Interfaces with Multifunctional Iron Sites Enabling High-Performance Real Seawater Splitting.
    Zhang F; Liu Y; Yu F; Pang H; Zhou X; Li D; Ma W; Zhou Q; Mo Y; Zhou H
    ACS Nano; 2023 Jan; ():. PubMed ID: 36594437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-supported MoO
    Hu L; Jin L; Zhang T; Zhang J; He J; Chen D; Li N; Xu Q; Lu J
    J Colloid Interface Sci; 2022 May; 614():337-344. PubMed ID: 35108631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting.
    Hu J; Zhou Y; Liu Y; Xu Z; Li H
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells.
    Kim KY; Habas SE; Schaidle JA; Logan BE
    Bioresour Technol; 2019 Dec; 293():122067. PubMed ID: 31499330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alkaline Water Electrolysis for Green Hydrogen Production.
    Tüysüz H
    Acc Chem Res; 2024 Feb; 57(4):558-67. PubMed ID: 38335244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anion doping and interfacial effects in B-Ni
    Sun M; Wang H; Wu H; Yang Y; Liu J; Cong R; Liang Z; Huang Z; Zheng J
    Dalton Trans; 2024 Feb; 53(8):3559-3572. PubMed ID: 38284391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RE-doped (RE = La, Ce and Er) Ni
    Wang Q; Liu J; Yan X; Li T; Li J; Wang Y; Yan L; Cao L
    Dalton Trans; 2023 Feb; 52(7):1895-1901. PubMed ID: 36691881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cobalt and nitrogen co-doped Ni
    Du X; Ma G; Zhang X
    Dalton Trans; 2021 Jun; 50(25):8955-8962. PubMed ID: 34109953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphide-Based Electrocatalysts for Urea Electrolysis: Recent Trends and Progress.
    Kumar S; Bhanuse GB; Fu YP
    Chemphyschem; 2024 Apr; 25(8):e202300924. PubMed ID: 38366133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction.
    Yu M; Budiyanto E; Tüysüz H
    Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202103824. PubMed ID: 34138511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile Synthesis of Well-Dispersed Ni
    Yang F; Huang S; Zhang B; Hou L; Ding Y; Bao W; Xu C; Yang W; Li Y
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31319520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing Atomically Dispersed Metal Electrocatalysts for Hydrogen Evolution: Chemical Coordination Effect and Electronic Metal Support Interaction.
    Jiang S; Xue D; Zhang JN
    Chem Asian J; 2022 Jul; 17(14):e202200319. PubMed ID: 35570194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting.
    Wang P; Pu Z; Li Y; Wu L; Tu Z; Jiang M; Kou Z; Amiinu IS; Mu S
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26001-26007. PubMed ID: 28714664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.