These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34571296)

  • 41. Cost-Effective Alkaline Water Electrolysis Based on Nitrogen- and Phosphorus-Doped Self-Supportive Electrocatalysts.
    Balogun MS; Qiu W; Huang Y; Yang H; Xu R; Zhao W; Li GR; Ji H; Tong Y
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28681991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integration of Ni Doping and a Mo
    Liu C; Sun L; Luo L; Wang W; Dong H; Chen Z
    ACS Appl Mater Interfaces; 2021 May; 13(19):22646-22654. PubMed ID: 33973467
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cu
    Jin X; Li J; Cui Y; Liu X; Zhang X; Yao J; Liu B
    Inorg Chem; 2019 Sep; 58(17):11630-11635. PubMed ID: 31415167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large-Area Synthesis of a Ni
    Wang XD; Cao Y; Teng Y; Chen HY; Xu YF; Kuang DB
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32812-32819. PubMed ID: 28875698
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heteroatom Doping Promoting CoP for Driving Water Splitting.
    Cheng W; Yang H; Wang T; He X; Tian L; Li Z
    Chem Rec; 2024 Jan; 24(1):e202300088. PubMed ID: 37098879
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting.
    Liu Y; Zhou D; Deng T; He G; Chen A; Sun X; Yang Y; Miao P
    ChemSusChem; 2021 Dec; 14(24):5359-5383. PubMed ID: 34704377
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives.
    Li S; Li E; An X; Hao X; Jiang Z; Guan G
    Nanoscale; 2021 Aug; 13(30):12788-12817. PubMed ID: 34477767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perovskite-based electrocatalysts for oxygen evolution reaction in alkaline media: A mini review.
    Kim D; Oh LS; Park JH; Kim HJ; Lee S; Lim E
    Front Chem; 2022; 10():1024865. PubMed ID: 36277352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multifold Nanostructuring and Atomic-Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production.
    Yu J; Wu X; Zhong Y; Yang G; Ni M; Zhou W; Shao Z
    Chemistry; 2018 Sep; 24(52):13800-13806. PubMed ID: 29981182
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review.
    Jayabharathi J; Karthikeyan B; Vishnu B; Sriram S
    Phys Chem Chem Phys; 2023 Mar; 25(13):8992-9019. PubMed ID: 36928479
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heteroatom-Doped Carbon Nanotube and Graphene-Based Electrocatalysts for Oxygen Reduction Reaction.
    Li JC; Hou PX; Liu C
    Small; 2017 Dec; 13(45):. PubMed ID: 28961364
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scalable synthesis of self-assembled bimetallic phosphide/N-doped graphene nanoflakes as an efficient electrocatalyst for overall water splitting.
    Yang D; Hou W; Lu Y; Zhang W; Chen Y
    Nanoscale; 2019 Jul; 11(27):12837-12845. PubMed ID: 31214672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity.
    Zhang R; Tang C; Kong R; Du G; Asiri AM; Chen L; Sun X
    Nanoscale; 2017 Apr; 9(14):4793-4800. PubMed ID: 28349153
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon-Based Nanomaterials as Sustainable Noble-Metal-Free Electrocatalysts.
    Meng Y; Huang X; Lin H; Zhang P; Gao Q; Li W
    Front Chem; 2019; 7():759. PubMed ID: 31781542
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Iridium-Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts.
    Lv F; Feng J; Wang K; Dou Z; Zhang W; Zhou J; Yang C; Luo M; Yang Y; Li Y; Gao P; Guo S
    ACS Cent Sci; 2018 Sep; 4(9):1244-1252. PubMed ID: 30276259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting.
    Wang W; Xu X; Zhou W; Shao Z
    Adv Sci (Weinh); 2017 Apr; 4(4):1600371. PubMed ID: 28435777
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transition Metal Phosphide-Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review.
    Weng CC; Ren JT; Yuan ZY
    ChemSusChem; 2020 Jul; 13(13):3357-3375. PubMed ID: 32196958
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam.
    Zhou H; Yu F; Huang Y; Sun J; Zhu Z; Nielsen RJ; He R; Bao J; Goddard WA; Chen S; Ren Z
    Nat Commun; 2016 Sep; 7():12765. PubMed ID: 27633712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphorization engineering ameliorated the electrocatalytic activity for overall water splitting on Ni
    Wang P; He H; Pu Z; Chen L; Zhang C; Wang Z; Mu S
    Dalton Trans; 2019 Sep; 48(35):13466-13471. PubMed ID: 31451822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.