BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 34571831)

  • 1. Why Do Some Vertebrates Have Microchromosomes?
    Srikulnath K; Ahmad SF; Singchat W; Panthum T
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchromosomes Exhibit Distinct Features of Vertebrate Chromosome Structure and Function with Underappreciated Ramifications for Genome Evolution.
    Perry BW; Schield DR; Adams RH; Castoe TA
    Mol Biol Evol; 2021 Mar; 38(3):904-910. PubMed ID: 32986808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Karyotype Analysis of Four Blind Snake Species (Reptilia: Squamata: Scolecophidia) and Karyotypic Changes in Serpentes.
    Matsubara K; Kumazawa Y; Ota H; Nishida C; Matsuda Y
    Cytogenet Genome Res; 2019; 157(1-2):98-106. PubMed ID: 30754040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Micro vs. macro: structural-functional organization of avian micro- and macrochromosomes].
    Rodionov AV
    Genetika; 1996 May; 32(5):597-608. PubMed ID: 8755033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Karyotype evolution in monitor lizards: cross-species chromosome mapping of cDNA reveals highly conserved synteny and gene order in the Toxicofera clade.
    Srikulnath K; Uno Y; Nishida C; Matsuda Y
    Chromosome Res; 2013 Dec; 21(8):805-19. PubMed ID: 24343421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Evolution of Reptile Chromosomes through Applications of Combined Cytogenetics and Genomics Approaches.
    Deakin JE; Ezaz T
    Cytogenet Genome Res; 2019; 157(1-2):7-20. PubMed ID: 30645998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and evolution of avian microchromosomes.
    Burt DW
    Cytogenet Genome Res; 2002; 96(1-4):97-112. PubMed ID: 12438785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-species chromosome painting corroborates microchromosome fusion during karyotype evolution of birds.
    Hansmann T; Nanda I; Volobouev V; Yang F; Schartl M; Haaf T; Schmid M
    Cytogenet Genome Res; 2009; 126(3):281-304. PubMed ID: 20068299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecies Chromosome Mapping in Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes (Aves): Cytogenomic Insight into Microchromosome Organization and Karyotype Evolution in Birds.
    Kretschmer R; de Souza MS; Furo IO; Romanov MN; Gunski RJ; Garnero ADV; de Freitas TRO; de Oliveira EHC; O'Connor RE; Griffin DK
    Cells; 2021 Apr; 10(4):. PubMed ID: 33916942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.
    Nakatani Y; Takeda H; Kohara Y; Morishita S
    Genome Res; 2007 Sep; 17(9):1254-65. PubMed ID: 17652425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative chromosome maps between the stone curlew and three ciconiiform species (the grey heron, little egret and crested ibis).
    Wang J; Su W; Hu Y; Li S; O'Brien PCM; Ferguson-Smith MA; Yang F; Nie W
    BMC Ecol Evol; 2022 Mar; 22(1):23. PubMed ID: 35240987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Hypermethylated Regions in Avian Chromosomes.
    Schmid M; Steinlein C
    Cytogenet Genome Res; 2017; 151(4):216-227. PubMed ID: 28315870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes.
    Axelsson E; Webster MT; Smith NG; Burt DW; Ellegren H
    Genome Res; 2005 Jan; 15(1):120-5. PubMed ID: 15590944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation.
    Nishida C; Ishijima J; Kosaka A; Tanabe H; Habermann FA; Griffin DK; Matsuda Y
    Chromosome Res; 2008; 16(1):171-81. PubMed ID: 18293111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Paralogons, Origin of the Vertebrate Karyotype, and Ancient Chromosomes Retained in Extant Species.
    Lamb TD
    Genome Biol Evol; 2021 Apr; 13(4):. PubMed ID: 33751101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved karyotype? Chromosomal rearrangements in Charadrius collaris detected by BAC-FISH.
    Ferreira PVM; Ribas TFA; Griffin DK; Correa LAR; Pinheiro MLS; Kiazim LG; O'Connor RE; Nagamachi CY; Pieczarka JC
    PLoS One; 2023; 18(1):e0280164. PubMed ID: 36630423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of 16 chicken microchromosomes by molecular markers using two-colour fluorescence in situ hybridization (FISH).
    Fillon V; Morisson M; Zoorob R; Auffray C; Douaire M; Gellin J; Vignal A
    Chromosome Res; 1998 Jun; 6(4):307-13. PubMed ID: 9688521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative comparative analysis of avian chromosome evolution by in-silico mapping of the gene ontology of homologous synteny blocks and evolutionary breakpoint regions.
    Claeys J; Romanov MN; Griffin DK
    Genetica; 2023 Jun; 151(3):167-178. PubMed ID: 36940055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of multiple chromosomal rearrangements in the genome of Willisornis vidua using BAC-FISH and chromosome painting on a supposed conserved karyotype.
    Ribas TFA; Pieczarka JC; Griffin DK; Kiazim LG; Nagamachi CY; O Brien PCM; Ferguson-Smith MA; Yang F; Aleixo A; O'Connor RE
    BMC Ecol Evol; 2021 Mar; 21(1):34. PubMed ID: 33653261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Germline-Restricted Chromosomes and Autosomal Variants Revealed by Pachytene Karyotyping of 17 Avian Species.
    Malinovskaya LP; Slobodchikova AY; Grishko EO; Pristyazhnyuk IE; Torgasheva AA; Borodin PM
    Cytogenet Genome Res; 2022; 162(3):148-160. PubMed ID: 35598601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.