BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 34572052)

  • 1. Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Familial Parkinson's Disease Patients Display α-Synuclein Pathology and Abnormal Mitochondrial Morphology.
    Diao X; Wang F; Becerra-Calixto A; Soto C; Mukherjee A
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson's iPSC-derived dopamine neurons.
    Zambon F; Cherubini M; Fernandes HJR; Lang C; Ryan BJ; Volpato V; Bengoa-Vergniory N; Vingill S; Attar M; Booth HDE; Haenseler W; Vowles J; Bowden R; Webber C; Cowley SA; Wade-Martins R
    Hum Mol Genet; 2019 Jun; 28(12):2001-2013. PubMed ID: 30753527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-synuclein dynamics in induced pluripotent stem cell-derived dopaminergic neurons from a Parkinson's disease patient (PARK4) with SNCA triplication.
    Fukusumi H; Togo K; Sumida M; Nakamori M; Obika S; Baba K; Shofuda T; Ito D; Okano H; Mochizuki H; Kanemura Y
    FEBS Open Bio; 2021 Feb; 11(2):354-366. PubMed ID: 33301617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. REST Protects Dopaminergic Neurons from Mitochondrial and α-Synuclein Oligomer Pathology in an Alpha Synuclein Overexpressing BAC-Transgenic Mouse Model.
    Ryan BJ; Bengoa-Vergniory N; Williamson M; Kirkiz E; Roberts R; Corda G; Sloan M; Saqlain S; Cherubini M; Poppinga J; Bogtofte H; Cioroch M; Hester S; Wade-Martins R
    J Neurosci; 2021 Apr; 41(16):3731-3746. PubMed ID: 33563726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons.
    Mazzulli JR; Zunke F; Tsunemi T; Toker NJ; Jeon S; Burbulla LF; Patnaik S; Sidransky E; Marugan JJ; Sue CM; Krainc D
    J Neurosci; 2016 Jul; 36(29):7693-706. PubMed ID: 27445146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication.
    Flierl A; Oliveira LM; Falomir-Lockhart LJ; Mak SK; Hesley J; Soldner F; Arndt-Jovin DJ; Jaenisch R; Langston JW; Jovin TM; Schüle B
    PLoS One; 2014; 9(11):e112413. PubMed ID: 25390032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue.
    Imaizumi Y; Okada Y; Akamatsu W; Koike M; Kuzumaki N; Hayakawa H; Nihira T; Kobayashi T; Ohyama M; Sato S; Takanashi M; Funayama M; Hirayama A; Soga T; Hishiki T; Suematsu M; Yagi T; Ito D; Kosakai A; Hayashi K; Shouji M; Nakanishi A; Suzuki N; Mizuno Y; Mizushima N; Amagai M; Uchiyama Y; Mochizuki H; Hattori N; Okano H
    Mol Brain; 2012 Oct; 5():35. PubMed ID: 23039195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A split-GFP tool reveals differences in the sub-mitochondrial distribution of wt and mutant alpha-synuclein.
    Vicario M; Cieri D; Vallese F; Catoni C; Barazzuol L; Berto P; Grinzato A; Barbieri L; Brini M; Calì T
    Cell Death Dis; 2019 Nov; 10(11):857. PubMed ID: 31719530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal pathology in hPSC-based models of Parkinson's disease results from loss of Nrf2 transcriptional activity at the Map1b gene locus.
    Czaniecki C; Ryan T; Stykel MG; Drolet J; Heide J; Hallam R; Wood S; Coackley C; Sherriff K; Bailey CDC; Ryan SD
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):14280-14289. PubMed ID: 31235589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca
    Paillusson S; Gomez-Suaga P; Stoica R; Little D; Gissen P; Devine MJ; Noble W; Hanger DP; Miller CCJ
    Acta Neuropathol; 2017 Jul; 134(1):129-149. PubMed ID: 28337542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNCA triplication Parkinson's patient's iPSC-derived DA neurons accumulate α-synuclein and are susceptible to oxidative stress.
    Byers B; Cord B; Nguyen HN; Schüle B; Fenno L; Lee PC; Deisseroth K; Langston JW; Pera RR; Palmer TD
    PLoS One; 2011; 6(11):e26159. PubMed ID: 22110584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of brain region-specific neuronal vulnerability in human iPSC-based model of familial Parkinson's disease.
    Brazdis RM; Alecu JE; Marsch D; Dahms A; Simmnacher K; Lörentz S; Brendler A; Schneider Y; Marxreiter F; Roybon L; Winner B; Xiang W; Prots I
    Hum Mol Genet; 2020 May; 29(7):1180-1191. PubMed ID: 32160287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GV-971 attenuates α-Synuclein aggregation and related pathology.
    Yu Z; Yang Y; Chan RB; Shi M; Stewart T; Huang Y; Liu Z; Lan G; Sheng L; Tian C; Yang D; Zhang J
    CNS Neurosci Ther; 2024 Feb; 30(2):e14393. PubMed ID: 37563872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracerebral Administration of a Ligand-ASO Conjugate Selectively Reduces α-Synuclein Accumulation in Monoamine Neurons of Double Mutant Human A30P*A53T*α-Synuclein Transgenic Mice.
    Pavia-Collado R; Cóppola-Segovia V; Miquel-Rio L; Alarcón-Aris D; Rodríguez-Aller R; Torres-López M; Paz V; Ruiz-Bronchal E; Campa L; Artigas F; Montefeltro A; Revilla R; Bortolozzi A
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease.
    Lin KJ; Lin KL; Chen SD; Liou CW; Chuang YC; Lin HY; Lin TK
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease.
    Stykel MG; Humphries K; Kirby MP; Czaniecki C; Wang T; Ryan T; Bamm V; Ryan SD
    FASEB J; 2018 Oct; 32(10):5350-5364. PubMed ID: 29688812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.
    Chung SY; Kishinevsky S; Mazzulli JR; Graziotto J; Mrejeru A; Mosharov EV; Puspita L; Valiulahi P; Sulzer D; Milner TA; Taldone T; Krainc D; Studer L; Shim JW
    Stem Cell Reports; 2016 Oct; 7(4):664-677. PubMed ID: 27641647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Parkinson's disease using induced pluripotent stem cells.
    Byers B; Lee HL; Reijo Pera R
    Curr Neurol Neurosci Rep; 2012 Jun; 12(3):237-42. PubMed ID: 22538490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkinson's disease in a dish - Using stem cells as a molecular tool.
    Badger JL; Cordero-Llana O; Hartfield EM; Wade-Martins R
    Neuropharmacology; 2014 Jan; 76 Pt A():88-96. PubMed ID: 24035919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.