These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 34572078)
1. Sustainable Agriculture through Multidisciplinary Seed Nanopriming: Prospects of Opportunities and Challenges. Shelar A; Singh AV; Maharjan RS; Laux P; Luch A; Gemmati D; Tisato V; Singh SP; Santilli MF; Shelar A; Chaskar M; Patil R Cells; 2021 Sep; 10(9):. PubMed ID: 34572078 [TBL] [Abstract][Full Text] [Related]
2. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. Yang L; Zhang L; Zhang Q; Wei J; Zhao X; Zheng Z; Chen B; Xu Z Plant Physiol Biochem; 2024 Sep; 214():108895. PubMed ID: 38976940 [TBL] [Abstract][Full Text] [Related]
3. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Khan MN; Fu C; Li J; Tao Y; Li Y; Hu J; Chen L; Khan Z; Wu H; Li Z Chemosphere; 2023 Jan; 310():136911. PubMed ID: 36270526 [TBL] [Abstract][Full Text] [Related]
4. Nanopriming-mediated memory imprints reduce salt toxicity in wheat seedlings by modulating physiobiochemical attributes. Farooq T; Akram MN; Hameed A; Ahmed T; Hameed A BMC Plant Biol; 2022 Nov; 22(1):540. PubMed ID: 36414951 [TBL] [Abstract][Full Text] [Related]
5. Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. Shelar A; Singh AV; Chaure N; Jagtap P; Chaudhari P; Shinde M; Nile SH; Chaskar M; Patil R Sci Total Environ; 2024 Nov; 951():175118. PubMed ID: 39097019 [TBL] [Abstract][Full Text] [Related]
6. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Mahakham W; Sarmah AK; Maensiri S; Theerakulpisut P Sci Rep; 2017 Aug; 7(1):8263. PubMed ID: 28811584 [TBL] [Abstract][Full Text] [Related]
7. Nanotechnology Potential in Seed Priming for Sustainable Agriculture. do Espirito Santo Pereira A; Caixeta Oliveira H; Fernandes Fraceto L; Santaella C Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498531 [TBL] [Abstract][Full Text] [Related]
8. Seed Priming with Reactive Oxygen Species-Generating Nanoparticles Enhanced Maize Tolerance to Multiple Abiotic Stresses. Chen S; Liu H; Yangzong Z; Gardea-Torresdey JL; White JC; Zhao L Environ Sci Technol; 2023 Dec; 57(48):19932-19941. PubMed ID: 37975618 [TBL] [Abstract][Full Text] [Related]
9. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Mahakham W; Theerakulpisut P; Maensiri S; Phumying S; Sarmah AK Sci Total Environ; 2016 Dec; 573():1089-1102. PubMed ID: 27639594 [TBL] [Abstract][Full Text] [Related]
10. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. Nile SH; Thiruvengadam M; Wang Y; Samynathan R; Shariati MA; Rebezov M; Nile A; Sun M; Venkidasamy B; Xiao J; Kai G J Nanobiotechnology; 2022 Jun; 20(1):254. PubMed ID: 35659295 [TBL] [Abstract][Full Text] [Related]
11. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops. Singh N; Bhuker A; Jeevanadam J Naunyn Schmiedebergs Arch Pharmacol; 2021 Jun; 394(6):1067-1089. PubMed ID: 33660031 [TBL] [Abstract][Full Text] [Related]
12. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. El-Badri AM; Batool M; Wang C; Hashem AM; Tabl KM; Nishawy E; Kuai J; Zhou G; Wang B Ecotoxicol Environ Saf; 2021 Dec; 225():112695. PubMed ID: 34478972 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species. Ishibashi Y; Yuasa T; Iwaya-Inoue M Adv Exp Med Biol; 2018; 1081():233-257. PubMed ID: 30288713 [TBL] [Abstract][Full Text] [Related]
14. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. El-Badri AM; Batool M; Mohamed IAA; Wang Z; Wang C; Tabl KM; Khatab A; Kuai J; Wang J; Wang B; Zhou G Environ Pollut; 2022 Oct; 310():119815. PubMed ID: 35926737 [TBL] [Abstract][Full Text] [Related]
15. Beneficial effects of bio-fabricated selenium nanoparticles as seed nanopriming agent on seed germination in rice (Oryza sativa L.). Setty J; Samant SB; Yadav MK; Manjubala M; Pandurangam V Sci Rep; 2023 Dec; 13(1):22349. PubMed ID: 38102184 [TBL] [Abstract][Full Text] [Related]
16. Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Acharya P; Jayaprakasha GK; Crosby KM; Jifon JL; Patil BS Sci Rep; 2020 Mar; 10(1):5037. PubMed ID: 32193449 [TBL] [Abstract][Full Text] [Related]
17. Chitosan nanoparticles encapsulating curcumin counteract salt-mediated ionic toxicity in wheat seedlings: an ecofriendly and sustainable approach. Hameed A; Maqsood W; Hameed A; Qayyum MA; Ahmed T; Farooq T Environ Sci Pollut Res Int; 2024 Feb; 31(6):8917-8929. PubMed ID: 38182953 [TBL] [Abstract][Full Text] [Related]
18. Seed priming to alleviate salinity stress in germinating seeds. Ibrahim EA J Plant Physiol; 2016 Mar; 192():38-46. PubMed ID: 26812088 [TBL] [Abstract][Full Text] [Related]
19. Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. Shelar A; Singh AV; Dietrich P; Maharjan RS; Thissen A; Didwal PN; Shinde M; Laux P; Luch A; Mathe V; Jahnke T; Chaskar M; Patil R RSC Adv; 2022 Mar; 12(17):10467-10488. PubMed ID: 35425017 [TBL] [Abstract][Full Text] [Related]
20. Seed germination and vigor: ensuring crop sustainability in a changing climate. Reed RC; Bradford KJ; Khanday I Heredity (Edinb); 2022 Jun; 128(6):450-459. PubMed ID: 35013549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]