These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 345723)

  • 1. Morphological differentiation of the fossil dinosaur bone cells. Light, transmission electron-, and scanning electron-microscopic studies.
    Pawlicki R
    Acta Anat (Basel); 1978; 100(4):411-8. PubMed ID: 345723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic pathways of the fossil dinosaur bones. Part V. Morphological differentiation of osteocyte lacunae and bone canaliculi and their significance in the system of extracellular communication.
    Pawlicki R
    Folia Histochem Cytobiol; 1985; 23(3):165-74. PubMed ID: 4065383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic pathways of the fossil dinosaur bones. Part III. Intermediary and other osteocytes in the system of metabolic pathways of dinosaur bone.
    Pawlicki R
    Folia Histochem Cytobiol; 1984; 22(2):91-7. PubMed ID: 6469130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic pathways of the fossil dinosaur bones. Part IV. Modes of linkage between osteocytes and a variety of nexuses of osteocytes processes.
    Pawlicki R
    Folia Histochem Cytobiol; 1984; 22(2):99-104. PubMed ID: 6469131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of the fossil dinosaur bone in the scanning electron microscope.
    Pawlicki R
    Z Mikrosk Anat Forsch; 1975; 89(2):393-8. PubMed ID: 1224770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic pathways of the fossil dinosaur bones Part II. Vascular canal in the communication system.
    Pawlicki R
    Folia Histochem Cytobiol; 1984; 22(1):33-41. PubMed ID: 6234214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic pathways of the fossil dinosaur bones. Part I. Vascular communication system.
    Pawlicki R
    Folia Histochem Cytochem (Krakow); 1983; 21(3-4):253-61. PubMed ID: 6667913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft sheets of fibrillar bone from a fossil of the supraorbital horn of the dinosaur Triceratops horridus.
    Armitage MH; Anderson KL
    Acta Histochem; 2013 Jul; 115(6):603-8. PubMed ID: 23414624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of fossil bone specimens for scanning electron microscopy.
    Pawlicki R
    Stain Technol; 1976 May; 51(3):147-52. PubMed ID: 779147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histochemical reactions for mucopolysaccharides in the dinosaur bone. Studies on Epon- and methacrylate-embedded semithin sections as well as on isolated osteocytes and ground sections of bone.
    Pawlicki R
    Acta Histochem; 1977; 58(1):75-8. PubMed ID: 140578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mineralized osteocyte: a living fossil.
    Bell LS; Kayser M; Jones C
    Am J Phys Anthropol; 2008 Dec; 137(4):449-56. PubMed ID: 18615594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood vessels and red blood cells preserved in dinosaur bones.
    Pawlicki R; Nowogrodzka-Zagórska M
    Ann Anat; 1998 Feb; 180(1):73-7. PubMed ID: 9488909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteocytic osteolysis in a cretaceous reptile.
    Belanger LF
    Rev Can Biol; 1977 Mar; 36(1):71-3. PubMed ID: 337412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).
    Hasegawa T; Yamamoto T; Hongo H; Qiu Z; Abe M; Kanesaki T; Tanaka K; Endo T; de Freitas PHL; Li M; Amizuka N
    Histochem Cell Biol; 2018 Apr; 149(4):423-432. PubMed ID: 29427243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections.
    Tanaka-Kamioka K; Kamioka H; Ris H; Lim SS
    J Bone Miner Res; 1998 Oct; 13(10):1555-68. PubMed ID: 9783544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histochemical demonstration of DNA in osteocytes from dinosaur bones.
    Pawlicki R
    Folia Histochem Cytobiol; 1995; 33(3):183-6. PubMed ID: 8612871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone canaliculus endings in the area of the osteocyte lacuna. Electron-microscopic studies.
    Pawlicki R
    Acta Anat (Basel); 1975; 91(2):292-304. PubMed ID: 1170702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission electron microscopic demonstration of vimentin in rat osteoblast and osteocyte cell bodies and processes using the immunogold technique.
    Shapiro F; Cahill C; Malatantis G; Nayak RC
    Anat Rec; 1995 Jan; 241(1):39-48. PubMed ID: 7879923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-microscopic observation of pleistocene tissues.
    Bigaj J; Kubiak H; Mleczko A
    Ann Med Sect Pol Acad Sci; 1976; 21(1-2):23-4. PubMed ID: 986108
    [No Abstract]   [Full Text] [Related]  

  • 20. X-ray microanalysis of fossil dinosaur bone: age differences in the calcium and phosphorus content of Gallimimus bullatus bones.
    Pawlicki R; Bolechała P
    Folia Histochem Cytobiol; 1987; 25(3-4):241-4. PubMed ID: 3450541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.