These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 34572389)
21. Translation of hyaluronic acid-based vitreous substitutes towards current regulations for medical devices. Schulz A; Germann A; Heinz WR; Engelhard M; Menz H; Rickmann A; Meiser I; Wien S; Wagner S; Januschowski K; Szurman P Acta Ophthalmol; 2023 Jun; 101(4):422-432. PubMed ID: 36457299 [TBL] [Abstract][Full Text] [Related]
22. Injectable self-crosslinking hydrogels based on hyaluronic acid as vitreous substitutes. Yu S; Wang S; Xia L; Hu H; Zou M; Jiang Z; Chi J; Zhang Y; Li H; Yang C; Liu W; Han B Int J Biol Macromol; 2022 May; 208():159-171. PubMed ID: 35301003 [TBL] [Abstract][Full Text] [Related]
23. Vitreous Substitutes as Drug Release Systems. Schulz A; Szurman P Transl Vis Sci Technol; 2022 Sep; 11(9):14. PubMed ID: 36125790 [TBL] [Abstract][Full Text] [Related]
24. A cross-linked hyaluronic acid hydrogel (Healaflow(®)) as a novel vitreous substitute. Barth H; Crafoord S; Andréasson S; Ghosh F Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):697-703. PubMed ID: 26743755 [TBL] [Abstract][Full Text] [Related]
25. Novel vitreous substitutes: the next frontier in vitreoretinal surgery. Schulz A; Januschowski K; Szurman P Curr Opin Ophthalmol; 2021 May; 32(3):288-293. PubMed ID: 33630788 [TBL] [Abstract][Full Text] [Related]
26. Vitreous substitutes: a comprehensive review. Kleinberg TT; Tzekov RT; Stein L; Ravi N; Kaushal S Surv Ophthalmol; 2011; 56(4):300-23. PubMed ID: 21601902 [TBL] [Abstract][Full Text] [Related]
27. Glutathione Improves the Antioxidant Activity of Vitamin C in Human Lens and Retinal Epithelial Cells: Implications for Vitreous Substitutes. Tram NK; McLean RM; Swindle-Reilly KE Curr Eye Res; 2021 Apr; 46(4):470-481. PubMed ID: 32838548 [TBL] [Abstract][Full Text] [Related]
28. Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment. Schnichels S; Schneider N; Hohenadl C; Hurst J; Schatz A; Januschowski K; Spitzer MS PLoS One; 2017; 12(3):e0172895. PubMed ID: 28248989 [TBL] [Abstract][Full Text] [Related]
29. Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport. Tram NK; Maxwell CJ; Swindle-Reilly KE Curr Eye Res; 2021 Apr; 46(4):429-444. PubMed ID: 33040616 [TBL] [Abstract][Full Text] [Related]
30. The feasibility study of an in situ marine polysaccharide-based hydrogel as the vitreous substitute. Jiang X; Peng Y; Yang C; Liu W; Han B J Biomed Mater Res A; 2018 Jul; 106(7):1997-2006. PubMed ID: 29569838 [TBL] [Abstract][Full Text] [Related]
31. In Situ Cross-linking Hydrogel as a Vehicle for Retinal Progenitor Cell Transplantation. Park J; Baranov P; Aydin A; Abdelgawad H; Singh D; Niu W; Kurisawa M; Spector M; Young MJ Cell Transplant; 2019 May; 28(5):596-606. PubMed ID: 30917696 [TBL] [Abstract][Full Text] [Related]
32. Biocompatibility of polyvinyl alcohol/trisodium trimetaphosphate as vitreous substitute in experimental vitrectomy model in rabbits. de Oliveira RA; Muralha FP; Grupenmacher AT; de Araújo Morandim-Giannetti A; Bersanetti PA; Maia M; Magalhães Junior O J Biomed Mater Res B Appl Biomater; 2022 Feb; 110(2):460-466. PubMed ID: 34328263 [TBL] [Abstract][Full Text] [Related]
33. Alginate- and Hyaluronic Acid-Based Hydrogels as Vitreous Substitutes: An In Vitro Evaluation. Schulz A; Rickmann A; Wahl S; Germann A; Stanzel BV; Januschowski K; Szurman P Transl Vis Sci Technol; 2020 Dec; 9(13):34. PubMed ID: 33384888 [TBL] [Abstract][Full Text] [Related]
34. Injectable self-assembling peptide hydrogel as a promising vitreous substitute. Cai Y; Xiang Y; Dong H; Huang W; Liu Y; Zhao C; Yuan D; Li Y; Shi J J Control Release; 2024 Oct; 376():402-412. PubMed ID: 39401678 [TBL] [Abstract][Full Text] [Related]
35. A novel vitreous substitute of using a foldable capsular vitreous body injected with polyvinylalcohol hydrogel. Feng S; Chen H; Liu Y; Huang Z; Sun X; Zhou L; Lu X; Gao Q Sci Rep; 2013; 3():1838. PubMed ID: 23670585 [TBL] [Abstract][Full Text] [Related]
36. Hydrogel-mediated co-transplantation of retinal pigmented epithelium and photoreceptors restores vision in an animal model of advanced retinal degeneration. Mitrousis N; Hacibekiroglu S; Ho MT; Sauvé Y; Nagy A; van der Kooy D; Shoichet MS Biomaterials; 2020 Oct; 257():120233. PubMed ID: 32791386 [TBL] [Abstract][Full Text] [Related]
37. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium. Ouyang H; Goldberg JL; Chen S; Li W; Xu GT; Li W; Zhang K; Nussenblatt RB; Liu Y; Xie T; Chan CC; Zack DJ Int J Mol Sci; 2016 Mar; 17(3):415. PubMed ID: 27102165 [TBL] [Abstract][Full Text] [Related]
39. Hydrogel-based ocular drug delivery systems for hydrophobic drugs. Torres-Luna C; Fan X; Domszy R; Hu N; Wang NS; Yang A Eur J Pharm Sci; 2020 Nov; 154():105503. PubMed ID: 32745587 [TBL] [Abstract][Full Text] [Related]
40. Combined 23-gauge sutureless vitrectomy and clear corneal phacoemulsification in patients with proliferative diabetic retinopathy. Lee DY; Jeong HS; Sohn HJ; Nam DH Retina; 2011 Oct; 31(9):1753-8. PubMed ID: 21555968 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]