These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34572464)

  • 1. NF-κB-Dependent and -Independent (Moonlighting) IκBα Functions in Differentiation and Cancer.
    Espinosa L; Marruecos L
    Biomedicines; 2021 Sep; 9(9):. PubMed ID: 34572464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells.
    Huang W; Xu L; Zhou X; Gao C; Yang M; Chen G; Zhu J; Jiang L; Gan H; Gou F; Feng H; Peng J; Xu Y
    Biochem Biophys Res Commun; 2013 Aug; 438(3):568-74. PubMed ID: 23911785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylase 4 inhibits NF-κB activation by facilitating IκBα sumoylation.
    Yang Q; Tang J; Xu C; Zhao H; Zhou Y; Wang Y; Yang M; Chen X; Chen J
    J Mol Cell Biol; 2020 Jul; 12(12):933-945. PubMed ID: 32770227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of monoubiquitylation on the control of IκBα degradation and NF-κB activity.
    Da Silva-Ferrada E; Torres-Ramos M; Aillet F; Campagna M; Matute C; Rivas C; Rodríguez MS; Lang V
    PLoS One; 2011; 6(10):e25397. PubMed ID: 22022389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous SUMO-2/3-ubiquitin chains optimize IκBα degradation and NF-κB activity.
    Aillet F; Lopitz-Otsoa F; Egaña I; Hjerpe R; Fraser P; Hay RT; Rodriguez MS; Lang V
    PLoS One; 2012; 7(12):e51672. PubMed ID: 23284737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IkappaBbeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells.
    Malek S; Chen Y; Huxford T; Ghosh G
    J Biol Chem; 2001 Nov; 276(48):45225-35. PubMed ID: 11571291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMOylation and deacetylation affect NF-κB p65 activity induced by high glucose in human lens epithelial cells.
    Han X; Dong XX; Shi MY; Feng L; Wang XL; Zhang JS; Yan QC
    Int J Ophthalmol; 2019; 12(9):1371-1379. PubMed ID: 31544029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression.
    Aguilera C; Hoya-Arias R; Haegeman G; Espinosa L; Bigas A
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16537-42. PubMed ID: 15536134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene-specific repression of proinflammatory cytokines in stimulated human macrophages by nuclear IκBα.
    Ghosh CC; Ramaswami S; Juvekar A; Vu HY; Galdieri L; Davidson D; Vancurova I
    J Immunol; 2010 Sep; 185(6):3685-93. PubMed ID: 20696864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An NF-kappaB-specific inhibitor, IkappaBalpha, binds to and inhibits cyclin-dependent kinase 4.
    Li J; Joo SH; Tsai MD
    Biochemistry; 2003 Nov; 42(46):13476-83. PubMed ID: 14621993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RelA control of IkappaBalpha phosphorylation: a positive feedback loop for high affinity NF-kappaB complexes.
    Yang L; Ross K; Qwarnstrom EE
    J Biol Chem; 2003 Aug; 278(33):30881-8. PubMed ID: 12663663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IkappaBalpha and IkappaBalpha /NF-kappa B complexes are retained in the cytoplasm through interaction with a novel partner, RasGAP SH3-binding protein 2.
    Prigent M; Barlat I; Langen H; Dargemont C
    J Biol Chem; 2000 Nov; 275(46):36441-9. PubMed ID: 10969074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-translational Modifications of IκBα: The State of the Art.
    Wang X; Peng H; Huang Y; Kong W; Cui Q; Du J; Jin H
    Front Cell Dev Biol; 2020; 8():574706. PubMed ID: 33224945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent exposed non-contacting amino acids play a critical role in NF-kappaB/IkappaBalpha complex formation.
    Huxford T; Mishler D; Phelps CB; Huang DB; Sengchanthalangsy LL; Reeves R; Hughes CA; Komives EA; Ghosh G
    J Mol Biol; 2002 Dec; 324(4):587-97. PubMed ID: 12460563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal-dependent and -independent degradation of free and NF-kappa B-bound IkappaBalpha.
    Pando MP; Verma IM
    J Biol Chem; 2000 Jul; 275(28):21278-86. PubMed ID: 10801847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UBE2S activates NF-κB signaling by binding with IκBα and promotes metastasis of lung adenocarcinoma cells.
    Ho JY; Lu HY; Cheng HH; Kuo YC; Lee YA; Cheng CH
    Cell Oncol (Dordr); 2021 Dec; 44(6):1325-1338. PubMed ID: 34582005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of IκBα in Japanese eel Anguilla japonica that impairs the IKKα-dependent activation of NF-κB, AP1, and type I IFN signaling pathways.
    Feng J; Xu Y; Lin P; Peng X; Wang Y; Zhang Z
    Dev Comp Immunol; 2021 Sep; 122():104044. PubMed ID: 33915176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages.
    Majdalawieh A; Ro HS
    Mediators Inflamm; 2010; 2010():823821. PubMed ID: 20396415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammatory factor-specific sumoylation regulates NF-κB signalling in glomerular cells from diabetic rats.
    Chen S; Yang T; Liu F; Li H; Guo Y; Yang H; Xu J; Song J; Zhu Z; Liu D
    Inflamm Res; 2014 Jan; 63(1):23-31. PubMed ID: 24173240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the IkappaBalpha C-terminal PEST sequence with NF-kappaB: insights into the inhibition of NF-kappaB DNA binding by IkappaBalpha.
    Sue SC; Dyson HJ
    J Mol Biol; 2009 May; 388(4):824-38. PubMed ID: 19327364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.