BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34572550)

  • 1. Accurate Sequence-Based Prediction of Deleterious nsSNPs with Multiple Sequence Profiles and Putative Binding Residues.
    Song R; Cao B; Peng Z; Oldfield CJ; Kurgan L; Wong KC; Yang J
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of disease-associated nsSNPs by integrating multi-scale ResNet models with deep feature fusion.
    Ge F; Zhang Y; Xu J; Muhammad A; Song J; Yu DJ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34953462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting deleterious nsSNPs: an analysis of sequence and structural attributes.
    Dobson RJ; Munroe PB; Caulfield MJ; Saqi MA
    BMC Bioinformatics; 2006 Apr; 7():217. PubMed ID: 16630345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison and integration of computational methods for deleterious synonymous mutation prediction.
    Cheng N; Li M; Zhao L; Zhang B; Yang Y; Zheng CH; Xia J
    Brief Bioinform; 2020 May; 21(3):970-981. PubMed ID: 31157880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of deleterious functional effects of amino acid mutations using a library of structure-based function descriptors.
    Herrgard S; Cammer SA; Hoffman BT; Knutson S; Gallina M; Speir JA; Fetrow JS; Baxter SM
    Proteins; 2003 Dec; 53(4):806-16. PubMed ID: 14635123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases.
    Wu J; Jiang R
    ScientificWorldJournal; 2013; 2013():675851. PubMed ID: 23431257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis Objective Search and Selection Tool (MOSST): an algorithm to predict structure-function related mutations in proteins.
    Olivera-Nappa A; Andrews BA; Asenjo JA
    BMC Bioinformatics; 2011 Apr; 12():122. PubMed ID: 21524307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information.
    Bao L; Cui Y
    Bioinformatics; 2005 May; 21(10):2185-90. PubMed ID: 15746281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting deleterious non-synonymous single nucleotide polymorphisms in signal peptides based on hybrid sequence attributes.
    Qin W; Li Y; Li J; Yu L; Wu D; Jing R; Pu X; Guo Y; Li M
    Comput Biol Chem; 2012 Feb; 36():31-5. PubMed ID: 22277674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning protein binding affinity using privileged information.
    Abbasi WA; Asif A; Ben-Hur A; Minhas FUAA
    BMC Bioinformatics; 2018 Nov; 19(1):425. PubMed ID: 30442086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DAMpred: Recognizing Disease-Associated nsSNPs through Bayes-Guided Neural-Network Model Built on Low-Resolution Structure Prediction of Proteins and Protein-Protein Interactions.
    Quan L; Wu H; Lyu Q; Zhang Y
    J Mol Biol; 2019 Jun; 431(13):2449-2459. PubMed ID: 30796987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge-based computational mutagenesis for predicting the disease potential of human non-synonymous single nucleotide polymorphisms.
    Masso M; Vaisman II
    J Theor Biol; 2010 Oct; 266(4):560-8. PubMed ID: 20655929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SmoPSI: Analysis and Prediction of Small Molecule Binding Sites Based on Protein Sequence Information.
    Wang W; Li K; Lv H; Zhang H; Wang S; Huang J
    Comput Math Methods Med; 2019; 2019():1926156. PubMed ID: 31814842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation analysis of pathogenic non-synonymous single nucleotide polymorphisms (nsSNPs) in WFS1 gene through computational approaches.
    Zhao J; Zhang S; Jiang Y; Liu Y; Zhu Q
    Sci Rep; 2023 Apr; 13(1):6774. PubMed ID: 37185285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the phenotypic effects of non-synonymous single nucleotide polymorphisms based on support vector machines.
    Tian J; Wu N; Guo X; Guo J; Zhang J; Fan Y
    BMC Bioinformatics; 2007 Nov; 8():450. PubMed ID: 18005451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences.
    Zhang J; Ghadermarzi S; Katuwawala A; Kurgan L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deleterious nonsynonymous single nucleotide polymorphisms in human solute carriers: the first comparison of three prediction methods.
    Hao DC; Xiao B; Xiang Y; Dong XW; Xiao PG
    Eur J Drug Metab Pharmacokinet; 2013 Mar; 38(1):53-62. PubMed ID: 22555822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of DNA-Binding Residues in Local Segments of Protein Sequences with Fuzzy Cognitive Maps.
    Amirkhani A; Kolahdoozi M; Wang C; Kurgan LA
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1372-1382. PubMed ID: 30602422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of deleterious non-synonymous SNPs based on protein interaction network and hybrid properties.
    Huang T; Wang P; Ye ZQ; Xu H; He Z; Feng KY; Hu L; Cui W; Wang K; Dong X; Xie L; Kong X; Cai YD; Li Y
    PLoS One; 2010 Jul; 5(7):e11900. PubMed ID: 20689580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.