BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34572550)

  • 21. usDSM: a novel method for deleterious synonymous mutation prediction using undersampling scheme.
    Tang X; Zhang T; Cheng N; Wang H; Zheng CH; Xia J; Zhang T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of structurally and functionally high-risk nsSNPs impacts on human bone morphogenetic protein receptor type IA (BMPR1A) by computational approach.
    Islam MJ; Parves MR; Mahmud S; Tithi FA; Reza MA
    Comput Biol Chem; 2019 Jun; 80():31-45. PubMed ID: 30884445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SNPdryad: predicting deleterious non-synonymous human SNPs using only orthologous protein sequences.
    Wong KC; Zhang Z
    Bioinformatics; 2014 Apr; 30(8):1112-1119. PubMed ID: 24389653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inferring non-synonymous single-nucleotide polymorphisms-disease associations via integration of multiple similarity networks.
    Wu J; Yang S; Jiang R
    IET Syst Biol; 2014 Apr; 8(2):33-40. PubMed ID: 25014223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of deleterious effects of nsSNPs in the POT1 gene: a structural genomics-based approach to understand the mechanism of cancer development.
    Amir M; Kumar V; Mohammad T; Dohare R; Hussain A; Rehman MT; Alam P; Alajmi MF; Islam A; Ahmad F; Hassan MI
    J Cell Biochem; 2019 Jun; 120(6):10281-10294. PubMed ID: 30556179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SySAP: a system-level predictor of deleterious single amino acid polymorphisms.
    Huang T; Wang C; Zhang G; Xie L; Li Y
    Protein Cell; 2012 Jan; 3(1):38-43. PubMed ID: 22183811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of disease causing non-synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP.
    Johansen MB; Izarzugaza JM; Brunak S; Petersen TN; Gupta R
    PLoS One; 2013; 8(7):e68370. PubMed ID: 23935863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PSIONplus: Accurate Sequence-Based Predictor of Ion Channels and Their Types.
    Gao J; Cui W; Sheng Y; Ruan J; Kurgan L
    PLoS One; 2016; 11(4):e0152964. PubMed ID: 27044036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hansa: an automated method for discriminating disease and neutral human nsSNPs.
    Acharya V; Nagarajaram HA
    Hum Mutat; 2012 Feb; 33(2):332-7. PubMed ID: 22045683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information.
    Liu R; Hu J
    BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combination use of protein-protein interaction network topological features improves the predictive scores of deleterious non-synonymous single-nucleotide polymorphisms.
    Wu Y; Jing R; Jiang L; Jiang Y; Kuang Q; Ye L; Yang L; Li Y; Li M
    Amino Acids; 2014 Aug; 46(8):2025-35. PubMed ID: 24849655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of zinc-binding sites using multiple sequence profiles and machine learning methods.
    Yan R; Wang X; Tian Y; Xu J; Xu X; Lin J
    Mol Omics; 2019 Jun; 15(3):205-215. PubMed ID: 31046040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenotype prediction of non-synonymous single-nucleotide polymorphisms in human ATP-binding cassette transporter genes.
    Wang LL; Liu YH; Meng LL; Li CG; Zhou SF
    Basic Clin Pharmacol Toxicol; 2011 Feb; 108(2):94-114. PubMed ID: 20849526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotype prediction of deleterious nonsynonymous single nucleotide polymorphisms in human alcohol metabolism-related genes: a bioinformatics study.
    Wang LL; Yang AK; Li Y; Liu JP; Zhou SF
    Alcohol; 2010 Aug; 44(5):425-38. PubMed ID: 20804942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Approaches and resources for prediction of the effects of non-synonymous single nucleotide polymorphism on protein function and interactions.
    Teng S; Michonova-Alexova E; Alexov E
    Curr Pharm Biotechnol; 2008 Apr; 9(2):123-33. PubMed ID: 18393868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes.
    Nakken S; Alseth I; Rognes T
    Neuroscience; 2007 Apr; 145(4):1273-9. PubMed ID: 17055652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450.
    Wang LL; Li Y; Zhou SF
    Drug Metab Dispos; 2009 May; 37(5):977-91. PubMed ID: 19204079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico analysis and high-risk pathogenic phenotype predictions of non-synonymous single nucleotide polymorphisms in human Crystallin beta A4 gene associated with congenital cataract.
    Wang Z; Huang C; Lv H; Zhang M; Li X
    PLoS One; 2020; 15(1):e0227859. PubMed ID: 31935276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.
    Capriotti E; Calabrese R; Casadio R
    Bioinformatics; 2006 Nov; 22(22):2729-34. PubMed ID: 16895930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.