These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34572550)

  • 41. CSmetaPred: a consensus method for prediction of catalytic residues.
    Choudhary P; Kumar S; Bachhawat AK; Pandit SB
    BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction by graph theoretic measures of structural effects in proteins arising from non-synonymous single nucleotide polymorphisms.
    Cheng TM; Lu YE; Vendruscolo M; Lio' P; Blundell TL
    PLoS Comput Biol; 2008 Jul; 4(7):e1000135. PubMed ID: 18654622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accurate prediction of deleterious protein kinase polymorphisms.
    Torkamani A; Schork NJ
    Bioinformatics; 2007 Nov; 23(21):2918-25. PubMed ID: 17855419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting the functional and structural consequences of nsSNPs in human methionine synthase gene using computational tools.
    Desai M; Chauhan JB
    Syst Biol Reprod Med; 2019 Aug; 65(4):288-300. PubMed ID: 30676783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome bioinformatic analysis of nonsynonymous SNPs.
    Burke DF; Worth CL; Priego EM; Cheng T; Smink LJ; Todd JA; Blundell TL
    BMC Bioinformatics; 2007 Aug; 8():301. PubMed ID: 17708757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deleterious Non-Synonymous Single Nucleotide Polymorphism Predictions on Human Transcription Factors.
    Wong KC; Yan S; Lin Q; Li X; Peng C
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):327-333. PubMed ID: 30475727
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure SNP (StSNP): a web server for mapping and modeling nsSNPs on protein structures with linkage to metabolic pathways.
    Uzun A; Leslin CM; Abyzov A; Ilyin V
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W384-92. PubMed ID: 17537826
    [TBL] [Abstract][Full Text] [Related]  

  • 50.
    Yazar M; Özbek P
    OMICS; 2021 Jan; 25(1):23-37. PubMed ID: 33058752
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction.
    Kauffman C; Karypis G
    Bioinformatics; 2009 Dec; 25(23):3099-107. PubMed ID: 19786483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disease-related mutations predicted to impact protein function.
    Schaefer C; Bromberg Y; Achten D; Rost B
    BMC Genomics; 2012 Jun; 13 Suppl 4(Suppl 4):S11. PubMed ID: 22759649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Collective judgment predicts disease-associated single nucleotide variants.
    Capriotti E; Altman RB; Bromberg Y
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S2. PubMed ID: 23819846
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.
    Capra JA; Laskowski RA; Thornton JM; Singh M; Funkhouser TA
    PLoS Comput Biol; 2009 Dec; 5(12):e1000585. PubMed ID: 19997483
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting RNA-binding residues from evolutionary information and sequence conservation.
    Huang YF; Chiu LY; Huang CC; Huang CK
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S2. PubMed ID: 21143803
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models.
    Wang X; Li C; Li F; Sharma VS; Song J; Webb GI
    BMC Bioinformatics; 2019 Nov; 20(1):602. PubMed ID: 31752668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and structural comparison of deleterious mutations in nsSNPs of ABL1 gene in chronic myeloid leukemia: a bio-informatics study.
    George Priya Doss C; Sudandiradoss C; Rajasekaran R; Purohit R; Ramanathan K; Sethumadhavan R
    J Biomed Inform; 2008 Aug; 41(4):607-12. PubMed ID: 18243808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. cnnAlpha: Protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks.
    Oberti M; Vaisman II
    Proteins; 2020 Nov; 88(11):1472-1481. PubMed ID: 32535960
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction and experimental characterization of nsSNPs altering human PDZ-binding motifs.
    Gfeller D; Ernst A; Jarvik N; Sidhu SS; Bader GD
    PLoS One; 2014; 9(4):e94507. PubMed ID: 24722214
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences.
    Zhang J; Kurgan L
    Bioinformatics; 2019 Jul; 35(14):i343-i353. PubMed ID: 31510679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.