These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34572550)

  • 61. Modeling effects of human single nucleotide polymorphisms on protein-protein interactions.
    Teng S; Madej T; Panchenko A; Alexov E
    Biophys J; 2009 Mar; 96(6):2178-88. PubMed ID: 19289044
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease.
    Dehiya V; Thomas J; Sael L
    PLoS One; 2018; 13(9):e0204101. PubMed ID: 30265692
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues.
    Yan J; Friedrich S; Kurgan L
    Brief Bioinform; 2016 Jan; 17(1):88-105. PubMed ID: 25935161
    [TBL] [Abstract][Full Text] [Related]  

  • 64. FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions.
    Roche DB; Buenavista MT; McGuffin LJ
    PLoS One; 2012; 7(5):e38219. PubMed ID: 22666491
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
    Chien YT; Huang SW
    PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Imbalance learning for the prediction of N
    Zhao Z; Peng H; Lan C; Zheng Y; Fang L; Li J
    BMC Genomics; 2018 Aug; 19(1):574. PubMed ID: 30068294
    [TBL] [Abstract][Full Text] [Related]  

  • 67. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches.
    Liu R; Hu J
    Proteins; 2013 Nov; 81(11):1885-99. PubMed ID: 23737141
    [TBL] [Abstract][Full Text] [Related]  

  • 68. WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation.
    Capriotti E; Calabrese R; Fariselli P; Martelli PL; Altman RB; Casadio R
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S6. PubMed ID: 23819482
    [TBL] [Abstract][Full Text] [Related]  

  • 69. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants.
    Alirezaie N; Kernohan KD; Hartley T; Majewski J; Hocking TD
    Am J Hum Genet; 2018 Oct; 103(4):474-483. PubMed ID: 30220433
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Candidate nsSNPs that can affect the functions and interactions of cell cycle proteins.
    Savas S; Ahmad MF; Shariff M; Kim DY; Ozcelik H
    Proteins; 2005 Feb; 58(3):697-705. PubMed ID: 15617026
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Predicting deleterious missense genetic variants via integrative supervised nonnegative matrix tri-factorization.
    Arani AA; Sehhati M; Tabatabaiefar MA
    Sci Rep; 2021 Dec; 11(1):23747. PubMed ID: 34887492
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional Analysis of Single Nucleotide Polymorphism in ZUFSP Protein and Implication in Pathogenesis.
    Ajadi MB; Soremekun OS; Adewumi AT; Kumalo HM; Soliman MES
    Protein J; 2021 Feb; 40(1):28-40. PubMed ID: 33512633
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Prediction of protein binding sites in protein structures using hidden Markov support vector machine.
    Liu B; Wang X; Lin L; Tang B; Dong Q; Wang X
    BMC Bioinformatics; 2009 Nov; 10():381. PubMed ID: 19925685
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm.
    Song J; Liu G; Jiang J; Zhang P; Liang Y
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477866
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Predicting hotspots for disease-causing single nucleotide variants using sequences-based coevolution, network analysis, and machine learning.
    Zheng W
    PLoS One; 2024; 19(5):e0302504. PubMed ID: 38743747
    [TBL] [Abstract][Full Text] [Related]  

  • 77. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.
    Karchin R; Diekhans M; Kelly L; Thomas DJ; Pieper U; Eswar N; Haussler D; Sali A
    Bioinformatics; 2005 Jun; 21(12):2814-20. PubMed ID: 15827081
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A structural bioinformatics approach to the analysis of nonsynonymous single nucleotide polymorphisms (nsSNPs) and their relation to disease.
    Worth CL; Bickerton GR; Schreyer A; Forman JR; Cheng TM; Lee S; Gong S; Burke DF; Blundell TL
    J Bioinform Comput Biol; 2007 Dec; 5(6):1297-318. PubMed ID: 18172930
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Protein Secondary Structure Prediction Based on Data Partition and Semi-Random Subspace Method.
    Ma Y; Liu Y; Cheng J
    Sci Rep; 2018 Jun; 8(1):9856. PubMed ID: 29959372
    [TBL] [Abstract][Full Text] [Related]  

  • 80. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.
    Yang X; Wang J; Sun J; Liu R
    PLoS One; 2015; 10(7):e0133260. PubMed ID: 26176857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.