These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 34573)

  • 1. Kinetic studies on human cysteinyl-tRNA synthetase.
    Chang GG; Pan F; Deng PN; Wu BY
    Int J Pept Protein Res; 1979 Mar; 13(3):267-73. PubMed ID: 34573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulphur metabolism in Paracoccus denitrificans. Purification, properties and regulation of cysteinyl-and methionyl-tRNA synthetase.
    Burnell JN; Whatley FR
    Biochim Biophys Acta; 1977 Mar; 481(1):266-78. PubMed ID: 14693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanism of glutaminyl-tRNA synthetase from human placenta.
    Pan F; Lee HH; Wang HY
    Proc Natl Sci Counc Repub China B; 1985 Jul; 9(3):155-64. PubMed ID: 4070504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic mechanism of arginyl-tRNA synthetase from human placenta.
    Wang HY; Pan F
    Int J Biochem; 1984; 16(12):1379-85. PubMed ID: 6530022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of various arginine transfer ribonucleic acids with arginyl-tRNA synthetase purified from human placenta.
    Katon N; Saneyoshi M
    Nucleic Acids Symp Ser; 1979; (6):s119-22. PubMed ID: 547226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of threonyl-tRNA synthetase from human placenta.
    Pan F; Lo KY; Pai SH; Lee HH
    Int J Pept Protein Res; 1982 Aug; 20(2):159-66. PubMed ID: 7118437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues.
    Kalogerakos T; Hountondji C; Berne PF; Dukta S; Blanquet S
    Biochimie; 1994; 76(1):33-44. PubMed ID: 8031903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast.
    Krauss G; Riesner D; Maass G
    Eur J Biochem; 1976 Sep; 68(1):81-93. PubMed ID: 9288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical comparison of the Neurospora crassa wild-type and the temperature-sensitive leucine-auxotroph mutant leu-5. Detailed kinetic comparison of the leucyl-tRNA synthetases.
    Airas RK; Schischkoff J; Cramer F
    Eur J Biochem; 1986 Jul; 158(1):51-6. PubMed ID: 2942399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanococcus jannaschii prolyl-cysteinyl-tRNA synthetase possesses overlapping amino acid binding sites.
    Stathopoulos C; Jacquin-Becker C; Becker HD; Li T; Ambrogelly A; Longman R; Söll D
    Biochemistry; 2001 Jan; 40(1):46-52. PubMed ID: 11141055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate.
    Jakubowski H
    Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylalanyl-tRNA synthetase from baker's yeast. Salt dependence of steady-state kinetics indicates two molecular forms of the enzyme.
    von der Haar F
    Eur J Biochem; 1976 May; 64(2):395-8. PubMed ID: 776618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plant aminoacyl-tRNA synthetases. 2'-DeoxyATP and ATP in reactions catalysed by yellow lupin aminoacyl-tRNA synthetases.
    Jakubowski H
    Acta Biochim Pol; 1980; 27(3-4):321-33. PubMed ID: 7269975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histidyl transfer ribonucleic acid synthetase from Salmonella typhimurium. Interaction with substrates and ATP analogues.
    Di Natale P; Schechter AN; Castronuovo Lepore G; De Lorenzo F
    Eur J Biochem; 1976 Feb; 62(2):293-8. PubMed ID: 3414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible kinetic mechanism of human placental alkaline phosphatase in vivo as implemented in reverse micelles.
    Chang GG; Shiao SL
    Eur J Biochem; 1994 Mar; 220(3):861-70. PubMed ID: 8143740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric assay for aminoacyl-tRNA synthetases.
    Chang GG; Pan F; Yeh C; Huang TM
    Anal Biochem; 1983 Apr; 130(1):171-6. PubMed ID: 6307078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding stoichiometry of tRNATrp and tryptophanyl-tRNA synthetase from bovine pancreas under pH conditions of maximum activity. Analysis by ultracentrifugation, fluorescence quenching and chemical modification.
    Fournier M; Plantard C; Labouesse B; Labouesse J
    Biochim Biophys Acta; 1987 Dec; 916(3):350-7. PubMed ID: 3689796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glutaminyl-transfer RNA synthetase of Escherichia coli. Purification, structure and function relationship.
    Kern D; Potier S; Lapointe J; Boulanger Y
    Biochim Biophys Acta; 1980 Mar; 607(1):65-80. PubMed ID: 6989402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct steps in the specific binding of tRNA to aminoacyl-tRNA synthetase. Temperature-jump studies on the serine-specific system from yeast and the tyrosine-specific system from Escherichia coli.
    Riesner D; Pingoud A; Boehme D; Peters F; Maass G
    Eur J Biochem; 1976 Sep; 68(1):71-80. PubMed ID: 9287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.