BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 34573335)

  • 1. Targeting the CDK6 Dependence of Ph+ Acute Lymphoblastic Leukemia.
    Porazzi P; De Dominici M; Salvino J; Calabretta B
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs.
    De Dominici M; Porazzi P; Xiao Y; Chao A; Tang HY; Kumar G; Fortina P; Spinelli O; Rambaldi A; Peterson LF; Petruk S; Barletta C; Mazo A; Cingolani G; Salvino JM; Calabretta B
    Blood; 2020 Apr; 135(18):1560-1573. PubMed ID: 32040545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting CDK6 and BCL2 Exploits the "MYB Addiction" of Ph
    De Dominici M; Porazzi P; Soliera AR; Mariani SA; Addya S; Fortina P; Peterson LF; Spinelli O; Rambaldi A; Martinelli G; Ferrari A; Iacobucci I; Calabretta B
    Cancer Res; 2018 Feb; 78(4):1097-1109. PubMed ID: 29233926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1
    Schneeweiss-Gleixner M; Byrgazov K; Stefanzl G; Berger D; Eisenwort G; Lucini CB; Herndlhofer S; Preuner S; Obrova K; Pusic P; Witzeneder N; Greiner G; Hoermann G; Sperr WR; Lion T; Deininger M; Valent P; Gleixner KV
    EBioMedicine; 2019 Dec; 50():111-121. PubMed ID: 31761618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific Antileukemic Activity of PD0332991, a CDK4/6 Inhibitor, against Philadelphia Chromosome-Positive Lymphoid Leukemia.
    Nemoto A; Saida S; Kato I; Kikuchi J; Furukawa Y; Maeda Y; Akahane K; Honna-Oshiro H; Goi K; Kagami K; Kimura S; Sato Y; Okabe S; Niwa A; Watanabe K; Nakahata T; Heike T; Sugita K; Inukai T
    Mol Cancer Ther; 2016 Jan; 15(1):94-105. PubMed ID: 26637365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting STAT5 or STAT5-Regulated Pathways Suppresses Leukemogenesis of Ph+ Acute Lymphoblastic Leukemia.
    Minieri V; De Dominici M; Porazzi P; Mariani SA; Spinelli O; Rambaldi A; Peterson LF; Porcu P; Nevalainen MT; Calabretta B
    Cancer Res; 2018 Oct; 78(20):5793-5807. PubMed ID: 30154155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias.
    Walker CJ; Oaks JJ; Santhanam R; Neviani P; Harb JG; Ferenchak G; Ellis JJ; Landesman Y; Eisfeld AK; Gabrail NY; Smith CL; Caligiuri MA; Hokland P; Roy DC; Reid A; Milojkovic D; Goldman JM; Apperley J; Garzon R; Marcucci G; Shacham S; Kauffman MG; Perrotti D
    Blood; 2013 Oct; 122(17):3034-44. PubMed ID: 23970380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crizotinib acts as ABL1 inhibitor combining ATP-binding with allosteric inhibition and is active against native BCR-ABL1 and its resistance and compound mutants BCR-ABL1
    Mian AA; Haberbosch I; Khamaisie H; Agbarya A; Pietsch L; Eshel E; Najib D; Chiriches C; Ottmann OG; Hantschel O; Biondi RM; Ruthardt M; Mahajna J
    Ann Hematol; 2021 Aug; 100(8):2023-2029. PubMed ID: 34110462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparison of Clinical Outcomes between P190 and P210 Trans-cripts in Adult Ph Chromosome Positive Acute Lymphoblastic Leukemia in the New Era of TKI].
    Qiu LL; Lu YJ; Jing Y; Yu L; Liu DH; Wang LL
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Apr; 24(2):369-74. PubMed ID: 27150994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RUNX1 transactivates BCR-ABL1 expression in Philadelphia chromosome positive acute lymphoblastic leukemia.
    Masuda T; Maeda S; Shimada S; Sakuramoto N; Morita K; Koyama A; Suzuki K; Mitsuda Y; Matsuo H; Kubota H; Kato I; Tanaka K; Takita J; Hirata M; Kataoka TR; Nakahata T; Adachi S; Hirai H; Mizuta S; Naka K; Imai Y; Kimura S; Sugiyama H; Kamikubo Y
    Cancer Sci; 2022 Feb; 113(2):529-539. PubMed ID: 34902205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination therapy of BCR-ABL-positive B cell acute lymphoblastic leukemia by tyrosine kinase inhibitor dasatinib and c-JUN N-terminal kinase inhibition.
    Xiao X; Liu P; Li D; Xia Z; Wang P; Zhang X; Liu M; Liao L; Jiao B; Ren R
    J Hematol Oncol; 2020 Jun; 13(1):80. PubMed ID: 32552902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of agents targeting the BCR-ABL tyrosine kinase as Philadelphia chromosome-positive acute lymphoblastic leukemia treatment.
    Thomas X; Heiblig M
    Expert Opin Drug Discov; 2016 Nov; 11(11):1061-1070. PubMed ID: 27548716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discontinuation of Maintenance Tyrosine Kinase Inhibitors in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia outside of Transplant.
    Samra B; Kantarjian HM; Sasaki K; Alotaibi AS; Konopleva M; O'Brien S; Ferrajoli A; Garris R; Nunez CA; Kadia TM; Short NJ; Jabbour E
    Acta Haematol; 2021; 144(3):285-292. PubMed ID: 33238261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs.
    Anderson NA; Cryan J; Ahmed A; Dai H; McGonagle GA; Rozier C; Benowitz AB
    Bioorg Med Chem Lett; 2020 May; 30(9):127106. PubMed ID: 32184044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors.
    Redaelli S; Mologni L; Rostagno R; Piazza R; Magistroni V; Ceccon M; Viltadi M; Flynn D; Gambacorti-Passerini C
    Am J Hematol; 2012 Nov; 87(11):E125-8. PubMed ID: 23044928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders.
    Steinebach C; Ng YLD; Sosič I; Lee CS; Chen S; Lindner S; Vu LP; Bricelj A; Haschemi R; Monschke M; Steinwarz E; Wagner KG; Bendas G; Luo J; Gütschow M; Krönke J
    Chem Sci; 2020 Apr; 11(13):3474-3486. PubMed ID: 33133483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway or NUP214-ABL1 fusion protein in human Acute Lymphoblastic Leukemia.
    Simioni C; Ultimo S; Martelli AM; Zauli G; Milani D; McCubrey JA; Capitani S; Neri LM
    Oncotarget; 2016 Nov; 7(48):79842-79853. PubMed ID: 27821800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Celecoxib inhibits proliferation and survival of chronic myelogeous leukemia (CML) cells via AMPK-dependent regulation of β-catenin and mTORC1/2.
    Riva B; De Dominici M; Gnemmi I; Mariani SA; Minassi A; Minieri V; Salomoni P; Canonico PL; Genazzani AA; Calabretta B; Condorelli F
    Oncotarget; 2016 Dec; 7(49):81555-81570. PubMed ID: 27835591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy and safety of ponatinib for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a case series from a single institute.
    Kidoguchi K; Ureshino H; Kizuka-Sano H; Yamaguchi K; Katsuya H; Kubota Y; Ando T; Miura M; Takahashi N; Kimura S
    Int J Hematol; 2021 Aug; 114(2):199-204. PubMed ID: 33907977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beneficial tyrosine kinase inhibitor therapy in a patient with relapsed BCR-ABL1-like acute lymphoblastic leukemia with CCDC88C-PDGFRB fusion.
    Oya S; Morishige S; Ozawa H; Sasaki K; Semba Y; Yamasaki Y; Nakamura T; Aoyama K; Seki R; Mouri F; Osaki K; Miyamoto T; Maeda T; Nagafuji K
    Int J Hematol; 2021 Feb; 113(2):285-289. PubMed ID: 32951102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.