These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34573779)

  • 1. Extension of Operational Matrix Technique for the Solution of Nonlinear System of Caputo Fractional Differential Equations Subjected to Integral Type Boundary Constrains.
    Khalil H; Khalil M; Hashim I; Agarwal P
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations.
    Khader MM
    J Comput Nonlinear Dyn; 2013 Oct; 8(4):41018-NaN. PubMed ID: 24891846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Discretization Approach for the Nonlinear Fractional Logistic Equation.
    Izadi M; Srivastava HM
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New operational matrices for solving fractional differential equations on the half-line.
    Bhrawy AH; Taha TM; Alzahrani EO; Baleanu D; Alzahrani AA
    PLoS One; 2015; 10(5):e0126620. PubMed ID: 25996369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix.
    Xie J; Huang Q; Yang X
    Springerplus; 2016; 5(1):1149. PubMed ID: 27504247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal control of nonlinear fractional order delay systems governed by Fredholm integral equations based on a new fractional derivative operator.
    Marzban HR
    ISA Trans; 2023 Feb; 133():233-247. PubMed ID: 35810028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical solution of fractional boundary value problem with caputo-fabrizio and its fractional integral.
    Moumen Bekkouche M; Mansouri I; Ahmed AAA
    J Appl Math Comput; 2022; 68(6):4305-4316. PubMed ID: 35136391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computation of solution to fractional order partial reaction diffusion equations.
    Gul H; Alrabaiah H; Ali S; Shah K; Muhammad S
    J Adv Res; 2020 Sep; 25():31-38. PubMed ID: 32922971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fredholm boundary-value problem for the system of fractional differential equations.
    Boichuk O; Feruk V
    Nonlinear Dyn; 2023; 111(8):7459-7468. PubMed ID: 36687007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable numerical results to a class of time-space fractional partial differential equations via spectral method.
    Shah K; Jarad F; Abdeljawad T
    J Adv Res; 2020 Sep; 25():39-48. PubMed ID: 32922972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new fractional orthogonal basis and its application in nonlinear delay fractional optimal control problems.
    Marzban HR
    ISA Trans; 2021 Aug; 114():106-119. PubMed ID: 33386165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations.
    Jafari H; Nemati S; Ganji RM
    Adv Differ Equ; 2021; 2021(1):435. PubMed ID: 34630543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthonormal piecewise Vieta-Lucas functions for the numerical solution of the one- and two-dimensional piecewise fractional Galilei invariant advection-diffusion equations.
    Heydari MH; Razzaghi M; Baleanu D
    J Adv Res; 2023 Jul; 49():175-190. PubMed ID: 36220592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative.
    Rahman MU; Arfan M; Shah K; Gómez-Aguilar JF
    Chaos Solitons Fractals; 2020 Nov; 140():110232. PubMed ID: 32863613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of a Nonlinear System of Fractional Differential Equations with Deviated Arguments Via Adomian Decomposition Method.
    Afreen A; Raheem A
    Int J Appl Comput Math; 2022; 8(5):269. PubMed ID: 36196138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal cubic splines for the numerical solution of nonlinear parabolic partial differential equations.
    Alavi J; Aminikhah H
    MethodsX; 2023; 10():102190. PubMed ID: 37168771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid yang transform adomian decomposition method for solving time-fractional nonlinear partial differential equation.
    Bekela AS; Deresse AT
    BMC Res Notes; 2024 Aug; 17(1):226. PubMed ID: 39148140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method.
    Bahşı AK; Yalçınbaş S
    Springerplus; 2016; 5(1):1375. PubMed ID: 27610294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution of nonlinear higher-index Hessenberg DAEs by Adomian polynomials and differential transform method.
    Benhammouda B
    Springerplus; 2015; 4():648. PubMed ID: 26543782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optimization method for studying fractional-order tuberculosis disease model via generalized Laguerre polynomials.
    Avazzadeh Z; Hassani H; Agarwal P; Mehrabi S; Ebadi MJ; Dahaghin MS
    Soft comput; 2023; 27(14):9519-9531. PubMed ID: 37287570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.