BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34573852)

  • 1. A High-Efficiency Spectral Method for Two-Dimensional Ocean Acoustic Propagation Calculations.
    Ma X; Wang Y; Zhu X; Liu W; Xiao W; Lan Q
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Chebyshev Spectral Methods for Solving Normal Modes in Atmospheric Acoustics.
    Wang Y; Tu H; Liu W; Xiao W; Lan Q
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34199538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exponential time differencing methods with Chebyshev collocation for polymers confined by interacting surfaces.
    Liu YX; Zhang HD
    J Chem Phys; 2014 Jun; 140(22):224101. PubMed ID: 24929368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Crank-Nicolson collocation spectral method for the two-dimensional telegraph equations.
    Zhou Y; Luo Z
    J Inequal Appl; 2018; 2018(1):137. PubMed ID: 30137734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation.
    Lin YT
    J Acoust Soc Am; 2019 Sep; 146(3):2058. PubMed ID: 31590529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.
    Motsa SS; Magagula VM; Sibanda P
    ScientificWorldJournal; 2014; 2014():581987. PubMed ID: 25254252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band structure analysis of phononic crystals based on the Chebyshev interval method.
    Lei JR; Xie LX; Liu J
    J Acoust Soc Am; 2017 Nov; 142(5):3234. PubMed ID: 29195436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spectrally discretized wide-angle parabolic equation model for simulating acoustic propagation in laterally inhomogeneous oceans.
    Tu H; Wang Y; Zhang Y; Wang X; Liu W
    J Acoust Soc Am; 2023 Jun; 153(6):3334. PubMed ID: 37328947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid collocation method for solving highly nonlinear boundary value problems.
    Adewumi AO; Akindeinde SO; Aderogba AA; Ogundare BS
    Heliyon; 2020 Mar; 6(3):e03553. PubMed ID: 32195390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of scattering of a plane wave from multiple prolate spheroids using the collocation multipole method.
    Lee WM; Chen JT
    J Acoust Soc Am; 2016 Oct; 140(4):2235. PubMed ID: 27794351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane covered duct lining for high-frequency noise attenuation: prediction using a Chebyshev collocation method.
    Huang L
    J Acoust Soc Am; 2008 Nov; 124(5):2918-29. PubMed ID: 19045780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral collocation method for collisional power absorption in radially inhomogeneous helicon plasmas.
    Cho S
    Phys Rev E; 2019 Mar; 99(3-1):033303. PubMed ID: 30999403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional underwater sound propagation model for offshore wind farm noise prediction.
    Lin YT; Newhall AE; Miller JH; Potty GR; Vigness-Raposa KJ
    J Acoust Soc Am; 2019 May; 145(5):EL335. PubMed ID: 31153310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus.
    Srivastava HM; Saad KM; Khader MM
    Chaos Solitons Fractals; 2020 Nov; 140():110174. PubMed ID: 32834654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method.
    Chiang PJ; Yu CP; Chang HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026703. PubMed ID: 17358447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods.
    Saad KM; Khader MM; Gómez-Aguilar JF; Baleanu D
    Chaos; 2019 Feb; 29(2):023116. PubMed ID: 30823705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional finite difference model for ocean acoustic propagation and benchmarking for topographic effects.
    Liu W; Zhang L; Wang W; Wang Y; Ma S; Cheng X; Xiao W
    J Acoust Soc Am; 2021 Aug; 150(2):1140. PubMed ID: 34470258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-domain Chebyshev collocation method for predicting ultrasonic field parameters in complex material geometries.
    Nielsen SA; Hesthaven JS
    Ultrasonics; 2002 May; 40(1-8):177-80. PubMed ID: 12159927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral shifted Chebyshev collocation technique with residual power series algorithm for time fractional problems.
    Rida SZ; Arafa AAM; Hussein HS; Ameen IG; Mostafa MMM
    Sci Rep; 2024 Apr; 14(1):8683. PubMed ID: 38622192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.