These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34574211)

  • 1. Sugars Replacement as a Strategy to Control the Formation of α-Dicarbonyl and Furanic Compounds during Cookie Processing.
    Cincotta F; Brighina S; Condurso C; Arena E; Verzera A; Fallico B
    Foods; 2021 Sep; 10(9):. PubMed ID: 34574211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hazardous Chemical Compounds in Cookies: The Role of Sugars and the Kinetics of Their Formation during Baking.
    Fallico B; Grasso A; Arena E
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of baking factors and recipes on the quality of butter cookies and the formation of advanced glycation end products (AGEs) and 5-hydroxymethylfurfural (HMF).
    Hu H; Wang Y; Shen M; Huang Y; Li C; Nie S; Xie M
    Curr Res Food Sci; 2022; 5():940-948. PubMed ID: 35677649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balancing Maillard reaction products formation and antioxidant activities for improved sensory quality and health benefit properties of pan baked buns.
    Tang Y; Huang Y; Li M; Zhu W; Zhang W; Luo S; Zhang Y; Ma J; Jiang Y
    Food Res Int; 2024 Nov; 195():114984. PubMed ID: 39277245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-induced contaminants.
    Arribas-Lorenzo G; Morales FJ
    J Agric Food Chem; 2010 Mar; 58(5):2966-72. PubMed ID: 20131787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the formation of Maillard reaction products in sweet cookies made of different cereals.
    Žilić S; Aktağ IG; Dodig D; Gökmen V
    Food Res Int; 2021 Jun; 144():110352. PubMed ID: 34053545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the non-enzymatic browning of lotus rhizome juice during sterilization mediated by 1,2-dicarboxyl and heterocyclic compounds.
    Sun X; Li J; Yan S
    J Sci Food Agric; 2024 Jan; 104(1):362-372. PubMed ID: 37598410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Sodium Chloride, Potassium Chloride, and Calcium Chloride on the Formation of α-Dicarbonyl Compounds and Furfurals and the Development of Browning in Cookies during Baking.
    Kocadağlı T; Gökmen V
    J Agric Food Chem; 2016 Oct; 64(41):7838-7848. PubMed ID: 27690415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydroxytyrosol and olive leaf extract on 1,2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model.
    Navarro M; Morales FJ
    Food Chem; 2017 Feb; 217():602-609. PubMed ID: 27664677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Intracellular Glutathione Levels on the Induction of Nrf2-Mediated Gene Expression by α-Dicarbonyl Precursors of Advanced Glycation End Products.
    Zheng L; van Dongen KCW; Bakker W; Miro Estruch I; Rietjens IMCM
    Nutrients; 2022 Mar; 14(7):. PubMed ID: 35405976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unravelling caramelization and Maillard reactions in glucose and glucose + leucine model cakes: Formation and degradation kinetics of precursors, α-dicarbonyl intermediates and furanic compounds during baking.
    Lee J; Roux S; Le Roux E; Keller S; Rega B; Bonazzi C
    Food Chem; 2021 Dec; 376():131917. PubMed ID: 34968913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study.
    Göncüoğlu Taş N; Gökmen V
    Food Chem; 2017 Apr; 221():1911-1922. PubMed ID: 27979180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selected Maillard Reaction Products and Their Yeast Metabolites in Commercial Wines.
    Kertsch AL; Wagner J; Henle T
    J Agric Food Chem; 2023 Aug; 71(32):12300-12310. PubMed ID: 37530036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of Major α-Dicarbonyl Content in U.S. Honey of Different Geographical Origins.
    Nyarko K; Greenlief CM
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars.
    Usui T; Yanagisawa S; Ohguchi M; Yoshino M; Kawabata R; Kishimoto J; Arai Y; Aida K; Watanabe H; Hayase F
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2465-72. PubMed ID: 17928698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of variations in the acrylamide and N(ε) -(carboxymethyl) lysine contents in cookies during baking.
    Cheng L; Jin C; Zhang Y
    J Food Sci; 2014 May; 79(5):T1030-8. PubMed ID: 24734960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Different Flours on the Formation of Hydroxymethylfurfural, Furfural, and Dicarbonyl Compounds in Heated Glucose/Flour Systems.
    Mesías M; Morales FJ
    Foods; 2017 Feb; 6(2):. PubMed ID: 28231092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of α‑dicarbonyl compounds formation in glucose-glutamic acid model of Maillard reaction.
    Zhang L; Sun Y; Pu D; Zhang Y; Sun B; Zhao Z
    Food Sci Nutr; 2021 Jan; 9(1):290-302. PubMed ID: 33473293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fasting Concentrations and Postprandial Response of 1,2-Dicarbonyl Compounds 3-Deoxyglucosone, Glyoxal, and Methylglyoxal Are Not Increased in Healthy Older Adults.
    Herpich C; Kochlik B; Weber D; Ott C; Grune T; Norman K; Raupbach J
    J Gerontol A Biol Sci Med Sci; 2022 May; 77(5):934-940. PubMed ID: 34726231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.