These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34574229)

  • 1. The Inclusion of the Food Microstructural Influence in Predictive Microbiology: State-of-the-Art.
    Verheyen D; Van Impe JFM
    Foods; 2021 Sep; 10(9):. PubMed ID: 34574229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of food microstructure on growth dynamics of Listeria monocytogenes in fish-based model systems.
    Verheyen D; Bolívar A; Pérez-Rodríguez F; Baka M; Skåra T; Van Impe JF
    Int J Food Microbiol; 2018 Oct; 283():7-13. PubMed ID: 29933230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of fish-based model systems with various microstructures.
    Verheyen D; Baka M; Glorieux S; Duquenne B; Fraeye I; Skåra T; Van Impe JF
    Food Res Int; 2018 Apr; 106():1069-1076. PubMed ID: 29579900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salmonella Typhimurium and Staphylococcus aureus dynamics in/on variable (micro)structures of fish-based model systems at suboptimal temperatures.
    Baka M; Verheyen D; Cornette N; Vercruyssen S; Van Impe JF
    Int J Food Microbiol; 2017 Jan; 240():32-39. PubMed ID: 27627842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of microstructure and initial cell conditions on thermal inactivation kinetics and sublethal injury of Listeria monocytogenes in fish-based food model systems.
    Verheyen D; Baka M; Akkermans S; Skåra T; Van Impe JF
    Food Microbiol; 2019 Dec; 84():103267. PubMed ID: 31421789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'MicroHibro': A software tool for predictive microbiology and microbial risk assessment in foods.
    González SC; Possas A; Carrasco E; Valero A; Bolívar A; Posada-Izquierdo GD; García-Gimeno RM; Zurera G; Pérez-Rodríguez F
    Int J Food Microbiol; 2019 Feb; 290():226-236. PubMed ID: 30368088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive modelling of the growth and survival of Listeria in fishery products.
    Ross T; Dalgaard P; Tienungoon S
    Int J Food Microbiol; 2000 Dec; 62(3):231-45. PubMed ID: 11156267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive microbiology: providing a knowledge-based framework for change management.
    McMeekin TA; Ross T
    Int J Food Microbiol; 2002 Sep; 78(1-2):133-53. PubMed ID: 12222630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling microbial growth within food safety risk assessments.
    Ross T; McMeekin TA
    Risk Anal; 2003 Feb; 23(1):179-97. PubMed ID: 12635732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting mycotoxins in foods: a review.
    Garcia D; Ramos AJ; Sanchis V; Marín S
    Food Microbiol; 2009 Dec; 26(8):757-69. PubMed ID: 19835759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
    Ferrer J; Prats C; López D; Vives-Rego J
    Int J Food Microbiol; 2009 Aug; 134(1-2):2-8. PubMed ID: 19217180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of predictive microbiology to assure the quality and safety of fish and fish products.
    McMeekin TA; Ross T; Olley J
    Int J Food Microbiol; 1992; 15(1-2):13-32. PubMed ID: 1622749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State of the art in benefit-risk analysis: food microbiology.
    Magnússon SH; Gunnlaugsdóttir H; Loveren Hv; Holm F; Kalogeras N; Leino O; Luteijn JM; Odekerken G; Pohjola MV; Tijhuis MJ; Tuomisto JT; Ueland Ø; White BC; Verhagen H
    Food Chem Toxicol; 2012 Jan; 50(1):33-9. PubMed ID: 21679739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive Modeling of Microbial Behavior in Food.
    Stavropoulou E; Bezirtzoglou E
    Foods; 2019 Dec; 8(12):. PubMed ID: 31817788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination.
    Valdramidis VP; Belaubre N; Zuniga R; Foster AM; Havet M; Geeraerd AH; Swain MJ; Bernaerts K; Van Impe JF; Kondjoyan A
    Int J Food Microbiol; 2005 Apr; 100(1-3):261-74. PubMed ID: 15854711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative microbiological risk assessment in food industry: Theory and practical application.
    Membré JM; Boué G
    Food Res Int; 2018 Apr; 106():1132-1139. PubMed ID: 29579908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive food microbiology for the meat industry: a review.
    McDonald K; Sun DW
    Int J Food Microbiol; 1999 Nov; 52(1-2):1-27. PubMed ID: 10573388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural factors controlling the survival of food-borne pathogens in porous media.
    Hills BP; Arnould L; Bossu C; Ridge YP
    Int J Food Microbiol; 2001 Jun; 66(3):163-73. PubMed ID: 11428575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.