These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34574229)

  • 21. Microstructural factors controlling the survival of food-borne pathogens in porous media.
    Hills BP; Arnould L; Bossu C; Ridge YP
    Int J Food Microbiol; 2001 Jun; 66(3):163-73. PubMed ID: 11428575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water activity, water glass dynamics, and the control of microbiological growth in foods.
    Chirife J; Buera MD
    Crit Rev Food Sci Nutr; 1996 May; 36(5):465-513. PubMed ID: 8725674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent trends in non-invasive in situ techniques to monitor bacterial colonies in solid (model) food.
    Lobete MM; Fernandez EN; Van Impe JF
    Front Microbiol; 2015; 6():148. PubMed ID: 25798133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling Growth of Listeria and Lactic Acid Bacteria in Food Environments.
    Dalgaard P; Mejlholm O
    Methods Mol Biol; 2019; 1918():247-264. PubMed ID: 30580414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stress-adaptive responses by heat under the microscope of predictive microbiology.
    Valdramidis VP; Geeraerd AH; Van Impe JF
    J Appl Microbiol; 2007 Nov; 103(5):1922-30. PubMed ID: 17953602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From Cheese-Making to Consumption: Exploring the Microbial Safety of Cheeses through Predictive Microbiology Models.
    Possas A; Bonilla-Luque OM; Valero A
    Foods; 2021 Feb; 10(2):. PubMed ID: 33562291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means.
    Smelt JP; Hellemons JC; Wouters PC; van Gerwen SJ
    Int J Food Microbiol; 2002 Sep; 78(1-2):57-77. PubMed ID: 12222638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Individual cell heterogeneity in Predictive Food Microbiology: Challenges in predicting a "noisy" world.
    Koutsoumanis KP; Aspridou Z
    Int J Food Microbiol; 2017 Jan; 240():3-10. PubMed ID: 27412586
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Polese P; Torre MD; Stecchini ML
    Ital J Food Saf; 2018 Mar; 7(1):6943. PubMed ID: 29732330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinactivation FE: A free web application for modelling isothermal and dynamic microbial inactivation.
    Garre A; Clemente-Carazo M; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2018 Oct; 112():353-360. PubMed ID: 30131146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of a model for growth of Lactococcus lactis and Listeria innocua in a structured gel system: effect of monopotassium phosphate.
    Antwi M; Theys TE; Bernaerts K; Van Impe JF; Geeraerd AH
    Int J Food Microbiol; 2008 Jul; 125(3):320-9. PubMed ID: 18562029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the kinetics of Listeria monocytogenes and Yersinia enterocolitica under dynamic growth/death-inducing conditions, in Italian style fresh sausage.
    Iannetti L; Salini R; Sperandii AF; Santarelli GA; Neri D; Di Marzio V; Romantini R; Migliorati G; Baranyi J
    Int J Food Microbiol; 2017 Jan; 240():108-114. PubMed ID: 27178365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling the growth, survival and death of microorganisms in foods: the UK food micromodel approach.
    McClure PJ; Blackburn CW; Cole MB; Curtis PS; Jones JE; Legan JD; Ogden ID; Peck MW; Roberts TA; Sutherland JP
    Int J Food Microbiol; 1994 Nov; 23(3-4):265-75. PubMed ID: 7873330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictive microbiology models vs. modeling microbial growth within Listeria monocytogenes risk assessment: what parameters matter and why.
    Pouillot R; Lubran MB
    Food Microbiol; 2011 Jun; 28(4):720-6. PubMed ID: 21511132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling microbial growth and dynamics.
    Esser DS; Leveau JH; Meyer KM
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):8831-46. PubMed ID: 26298697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling Yersinia enterocolitica inactivation in coculture experiments with Lactobacillus sakei as based on pH and lactic acid profiles.
    Janssen M; Geeraerd AH; Logist F; De Visscher Y; Vereecken KM; Debevere J; Devlieghere F; Van Impe JF
    Int J Food Microbiol; 2006 Aug; 111(1):59-72. PubMed ID: 16876279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling bacterial growth in quantitative microbiological risk assessment: is it possible?
    Nauta MJ
    Int J Food Microbiol; 2002 Mar; 73(2-3):297-304. PubMed ID: 11934037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Predictive microbiology. Toward an operational tool to help our appraisal].
    Jolivet P
    Ann Pharm Fr; 2000 Dec; 58(6 Suppl):475-81. PubMed ID: 11148386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predictive modeling of microbial single cells: A review.
    Ding T; Liao XY; Dong QL; Xuan XT; Chen SG; Ye XQ; Liu DH
    Crit Rev Food Sci Nutr; 2018 Mar; 58(5):711-725. PubMed ID: 27624057
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.