These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34574241)

  • 1. Prediction in the Dynamics and Spoilage of
    Yi Z; Xie J
    Foods; 2021 Sep; 10(9):. PubMed ID: 34574241
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of Physicochemical Changes and Water Migration of
    Wang XY; Xie J
    Front Microbiol; 2021; 12():727333. PubMed ID: 34777276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of Genomics, Metabolomics, Fourier Transform Infrared in the Evaluation of Spoilage Targets of
    Wang XY; Yan J; Xie J
    J Agric Food Chem; 2023 Jun; 71(24):9558-9568. PubMed ID: 37306251
    [No Abstract]   [Full Text] [Related]  

  • 4. Study on the Volatile Organic Compounds and Its Correlation with Water Dynamics of Bigeye Tuna (
    Wang XY; Xie J
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31466228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth Kinetics and Spoilage Potential of Co-culturing Acinetobacter johnsonii and Pseudomonas fluorescens from Bigeye Tuna (Thunnus obesus) During Refrigerated Storage.
    Wang XY; Xie J
    Curr Microbiol; 2020 Aug; 77(8):1637-1646. PubMed ID: 32277276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Proteomics Reveals the Spoilage-Related Factors of
    Yi Z; Xie J
    Front Microbiol; 2021; 12():740482. PubMed ID: 34925259
    [No Abstract]   [Full Text] [Related]  

  • 7. Genomic Analysis of Two Representative Strains of
    Yi Z; Xie J
    Foods; 2022 Apr; 11(9):. PubMed ID: 35563985
    [No Abstract]   [Full Text] [Related]  

  • 8. A non-invasive method for quantitative monitoring of quality changes and water migration in bigeye tuna (
    Wang XY; Xie J; Qian YF
    Food Sci Technol Int; 2020 Sep; 26(6):475-484. PubMed ID: 32070144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic assessment of the role of N-acyl homoserine lactone in Shewanella putrefaciens spoilage.
    Zhang C; Zhu S; Jatt AN; Pan Y; Zeng M
    Lett Appl Microbiol; 2017 Nov; 65(5):388-394. PubMed ID: 28833381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of gas sensors for modelling the dynamic growth of Pseudomonas in pork stored at different temperatures.
    Gu X; Feng L; Zhu J; Li Y; Tu K; Dong Q; Pan L
    Meat Sci; 2021 Jan; 171():108282. PubMed ID: 32858421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on spoilage potential and its molecular basis of Shewanella putrefaciens in response to cold conditions by Label-free quantitative proteomic analysis.
    Qian YF; Cheng Y; Xie J; Yang SP
    World J Microbiol Biotechnol; 2022 Dec; 39(2):40. PubMed ID: 36512125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of storage temperature on microbial spoilage characteristics of haddock fillets (Melanogrammus aeglefinus) evaluated by multivariate quality prediction.
    Olafsdottir G; Lauzon HL; Martinsdottir E; Kristbergsson K
    Int J Food Microbiol; 2006 Sep; 111(2):112-25. PubMed ID: 16889858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius).
    Galli GL; Shiels HA; Brill RW
    Physiol Biochem Zool; 2009; 82(3):280-90. PubMed ID: 19284308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aroma Profile Characterization of Mahi-Mahi and Tuna for Determining Spoilage Using Purge and Trap Gas Chromatography-Mass Spectrometry.
    Bai J; Baker SM; Goodrich-Schneider RM; Montazeri N; Sarnoski PJ
    J Food Sci; 2019 Mar; 84(3):481-489. PubMed ID: 30775780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of CO
    Li P; Mei J; Tan M; Xie J
    Food Chem; 2022 Dec; 397():133748. PubMed ID: 35905618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in lipid composition of Bigeye tuna (Thunnus obesus) during storage at 0 °C and 4 °C.
    Wang XY; Xie J; Chen XJ
    Food Res Int; 2021 May; 143():110233. PubMed ID: 33992346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Adhesion and Spoilage of
    Zhang W; Yu Y; He H; Lv X; Liu Z; Ni L
    Foods; 2022 Jun; 11(13):. PubMed ID: 35804729
    [No Abstract]   [Full Text] [Related]  

  • 18. Development of a qPCR Method for the Identification and Quantification of Two Closely Related Tuna Species, Bigeye Tuna (Thunnus obesus) and Yellowfin Tuna (Thunnus albacares), in Canned Tuna.
    Bojolly D; Doyen P; Le Fur B; Christaki U; Verrez-Bagnis V; Grard T
    J Agric Food Chem; 2017 Feb; 65(4):913-920. PubMed ID: 28085274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Spatial-temporal distribution of bigeye tuna Thunnus obesus in the tropical Atlantic Ocean based on Argo data].
    Yang SL; Jin SF; Hua CJ; Dai Y
    Ying Yong Sheng Tai Xue Bao; 2015 Feb; 26(2):601-8. PubMed ID: 26094479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide can inhibit biofilms formation and cellular properties of Shewanella putrefaciens at both 30 °C and 4 °C.
    Li P; Mei J; Xie J
    Food Res Int; 2022 Nov; 161():111781. PubMed ID: 36192877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.