These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
915 related articles for article (PubMed ID: 34574855)
1. Salt-Tolerant Compatible Microbial Inoculants Modulate Physio-Biochemical Responses Enhance Plant Growth, Zn Biofortification and Yield of Wheat Grown in Saline-Sodic Soil. Singh UB; Malviya D; Singh S; Singh P; Ghatak A; Imran M; Rai JP; Singh RK; Manna MC; Sharma AK; Saxena AK Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574855 [TBL] [Abstract][Full Text] [Related]
2. Restructuring the Cellular Responses: Connecting Microbial Intervention With Ecological Fitness and Adaptiveness to the Maize ( Singh S; Singh UB; Trivdi M; Malviya D; Sahu PK; Roy M; Sharma PK; Singh HV; Manna MC; Saxena AK Front Microbiol; 2020; 11():568325. PubMed ID: 33643224 [TBL] [Abstract][Full Text] [Related]
4. Plant-growth-promoting Bacillus and Paenibacillus species improve the nutritional status of Triticum aestivum L. Hussain A; Ahmad M; Nafees M; Iqbal Z; Luqman M; Jamil M; Maqsood A; Mora-Poblete F; Ahmar S; Chen JT; Alyemeni MN; Ahmad P PLoS One; 2020; 15(12):e0241130. PubMed ID: 33259487 [TBL] [Abstract][Full Text] [Related]
5. Contribution of potassium solubilizing bacteria in improved potassium assimilation and cytosolic K Nawaz A; Qamar ZU; Marghoob MU; Imtiaz M; Imran A; Mubeen F Front Microbiol; 2023; 14():1196024. PubMed ID: 37711698 [TBL] [Abstract][Full Text] [Related]
6. Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts. Eltlbany N; Baklawa M; Ding GC; Nassal D; Weber N; Kandeler E; Neumann G; Ludewig U; van Overbeek L; Smalla K FEMS Microbiol Ecol; 2019 Sep; 95(9):. PubMed ID: 31386159 [TBL] [Abstract][Full Text] [Related]
8. Prolific contribution of Pseudomonas protegens in Zn biofortification of wheat by modulating multifaceted physiological response under saline and non-saline conditions. Singh J; Singh AV; Upadhayay VK; Khan A; Chandra R World J Microbiol Biotechnol; 2022 Sep; 38(12):227. PubMed ID: 36136176 [TBL] [Abstract][Full Text] [Related]
9. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Upadhyay SK; Singh DP Plant Biol (Stuttg); 2015 Jan; 17(1):288-93. PubMed ID: 24750405 [TBL] [Abstract][Full Text] [Related]
10. Root-mediated acidification and resistance to low calcium improve wheat (Triticum aestivum) performance in saline-sodic conditions. Saqib M; Abbas G; Akhtar J Plant Physiol Biochem; 2020 Nov; 156():201-208. PubMed ID: 32977176 [TBL] [Abstract][Full Text] [Related]
11. Halotolerant Bacillus spizizenii FMH45 promoting growth, physiological, and antioxidant parameters of tomato plants exposed to salt stress. Masmoudi F; Tounsi S; Dunlap CA; Trigui M Plant Cell Rep; 2021 Jul; 40(7):1199-1213. PubMed ID: 33983490 [TBL] [Abstract][Full Text] [Related]
12. Singh UB; Malviya D; Singh S; Kumar M; Sahu PK; Singh HV; Kumar S; Roy M; Imran M; Rai JP; Sharma AK; Saxena AK Front Microbiol; 2019; 10():1697. PubMed ID: 31417511 [TBL] [Abstract][Full Text] [Related]
13. Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development. Ren H; Zhang F; Zhu X; Lamlom SF; Zhao K; Zhang B; Wang J Front Microbiol; 2023; 14():1233351. PubMed ID: 37799597 [TBL] [Abstract][Full Text] [Related]
14. Comparative effects of wild type Stenotrophomonas maltophilia and its indole acetic acid-deficient mutants on wheat. Hassan TU; Bano A Plant Biol (Stuttg); 2016 Sep; 18(5):835-41. PubMed ID: 27263526 [TBL] [Abstract][Full Text] [Related]
15. Microbial inoculants with higher capacity to colonize soils improved wheat drought tolerance. Li J; Wang J; Liu H; Macdonald CA; Singh BK Microb Biotechnol; 2023 Nov; 16(11):2131-2144. PubMed ID: 37815273 [TBL] [Abstract][Full Text] [Related]
16. Integrated use of plant growth-promoting bacteria and nano-zinc foliar spray is a sustainable approach for wheat biofortification, yield, and zinc use efficiency. Jalal A; Oliveira CEDS; Fernandes GC; da Silva EC; da Costa KN; de Souza JS; Leite GDS; Biagini ALC; Galindo FS; Teixeira Filho MCM Front Plant Sci; 2023; 14():1146808. PubMed ID: 37223804 [TBL] [Abstract][Full Text] [Related]
17. Beijerinckia fluminensis BFC-33, a novel multi-stress-tolerant soil bacterium: Deciphering the stress amelioration, phytopathogenic inhibition and growth promotion in Triticum aestivum (L.). Al-Shwaiman HA; Shahid M; Elgorban AM; Siddique KHM; Syed A Chemosphere; 2022 May; 295():133843. PubMed ID: 35122822 [TBL] [Abstract][Full Text] [Related]
18. Stress-Tolerant Endophytic Isolate Shahid M; Zeyad MT; Syed A; Singh UB; Mohamed A; Bahkali AH; Elgorban AM; Pichtel J Int J Environ Res Public Health; 2022 Sep; 19(17):. PubMed ID: 36078599 [TBL] [Abstract][Full Text] [Related]
19. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Islam F; Yasmeen T; Ali Q; Ali S; Arif MS; Hussain S; Rizvi H Ecotoxicol Environ Saf; 2014 Jun; 104():285-93. PubMed ID: 24726941 [TBL] [Abstract][Full Text] [Related]
20. Quantification of Trichoderma afroharzianum, Trichoderma harzianum and Trichoderma gamsii inoculants in soil, the wheat rhizosphere and in planta suppression of the crown rot pathogen Fusarium pseudograminearum. Stummer BE; Zhang Q; Zhang X; Warren RA; Harvey PR J Appl Microbiol; 2020 Oct; 129(4):971-990. PubMed ID: 32320112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]