These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 34575391)
1. Diagnosis of Subclinical Keratoconus Based on Machine Learning Techniques. Castro-Luna G; Jiménez-Rodríguez D; Castaño-Fernández AB; Pérez-Rueda A J Clin Med; 2021 Sep; 10(18):. PubMed ID: 34575391 [TBL] [Abstract][Full Text] [Related]
2. Diagnosis of Subclinical Keratoconus with a Combined Model of Biomechanical and Topographic Parameters. Pérez-Rueda A; Jiménez-Rodríguez D; Castro-Luna G J Clin Med; 2021 Jun; 10(13):. PubMed ID: 34206580 [TBL] [Abstract][Full Text] [Related]
3. [Keratoconus detection and classification from parameters of the Corvis®ST : A study based on algorithms of machine learning]. Langenbucher A; Häfner L; Eppig T; Seitz B; Szentmáry N; Flockerzi E Ophthalmologe; 2021 Jul; 118(7):697-706. PubMed ID: 32970190 [TBL] [Abstract][Full Text] [Related]
4. [Study on corneal biomechanical properties of suspicious keratoconus patients in corneal topography]. Zhang YH; Wang Y; Li LY; Zhang L; Wei PH Zhonghua Yan Ke Za Zhi; 2019 Jun; 55(6):442-447. PubMed ID: 31189274 [No Abstract] [Full Text] [Related]
5. Biomechanical Analysis of Subclinical Keratoconus With Normal Topographic, Topometric, and Tomographic Findings. Koc M; Aydemir E; Tekin K; Inanc M; Kosekahya P; Kiziltoprak H J Refract Surg; 2019 Apr; 35(4):247-252. PubMed ID: 30984982 [TBL] [Abstract][Full Text] [Related]
6. Relationship Among Corneal Stiffness, Thickness, and Biomechanical Parameters Measured by Corvis ST, Pentacam and ORA in Keratoconus. Zhao Y; Shen Y; Yan Z; Tian M; Zhao J; Zhou X Front Physiol; 2019; 10():740. PubMed ID: 31263429 [TBL] [Abstract][Full Text] [Related]
7. Relationship between corneal biomechanical parameters and corneal sublayer thickness measured by Corvis ST and UHR-OCT in keratoconus and normal eyes. Li Y; Xu Z; Liu Q; Wang Y; Lin K; Xia J; Chen S; Hu L Eye Vis (Lond); 2021 Jan; 8(1):2. PubMed ID: 33419485 [TBL] [Abstract][Full Text] [Related]
8. Machine learning with a reduced dimensionality representation of comprehensive Pentacam tomography parameters to identify subclinical keratoconus. Cao K; Verspoor K; Chan E; Daniell M; Sahebjada S; Baird PN Comput Biol Med; 2021 Nov; 138():104884. PubMed ID: 34607273 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Corneal Tomography and a New Combined Tomographic Biomechanical Index in Subclinical Keratoconus. Chan TCY; Wang YM; Yu M; Jhanji V J Refract Surg; 2018 Sep; 34(9):616-621. PubMed ID: 30199566 [TBL] [Abstract][Full Text] [Related]
10. Application of a scheimpflug-based biomechanical analyser and tomography in the early detection of subclinical keratoconus in chinese patients. Liu Y; Zhang Y; Chen Y BMC Ophthalmol; 2021 Sep; 21(1):339. PubMed ID: 34544392 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. Kataria P; Padmanabhan P; Gopalakrishnan A; Padmanaban V; Mahadik S; Ambrósio R J Cataract Refract Surg; 2019 Mar; 45(3):328-336. PubMed ID: 30527442 [TBL] [Abstract][Full Text] [Related]
12. Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas. Huseynli S; Salgado-Borges J; Alio JL Eur J Ophthalmol; 2018 Sep; 28(5):521-534. PubMed ID: 29566542 [TBL] [Abstract][Full Text] [Related]
13. Detection of subclinical keratoconus using an automated decision tree classification. Smadja D; Touboul D; Cohen A; Doveh E; Santhiago MR; Mello GR; Krueger RR; Colin J Am J Ophthalmol; 2013 Aug; 156(2):237-246.e1. PubMed ID: 23746611 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of corneal topographic, tomographic and biomechanical indices for detecting clinical and subclinical keratoconus: a comprehensive three-device study. Heidari Z; Hashemi H; Mohammadpour M; Amanzadeh K; Fotouhi A Int J Ophthalmol; 2021; 14(2):228-239. PubMed ID: 33614451 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the Performance of Various Machine Learning Algorithms to Detect Subclinical Keratoconus. Cao K; Verspoor K; Sahebjada S; Baird PN Transl Vis Sci Technol; 2020 Apr; 9(2):24. PubMed ID: 32818085 [TBL] [Abstract][Full Text] [Related]
16. [Assessment of corneal biomechanical changes after small incision lenticule extraction with Pentacam and Corvis ST]. Zhang MY; Zhang FJ; Song YZ; Zhao Q; Zhang Y; Yang WL; Zhai CB Zhonghua Yan Ke Za Zhi; 2020 Feb; 56(2):103-109. PubMed ID: 32074820 [No Abstract] [Full Text] [Related]
17. [Examination and discriminant analysis of corneal biomechanics with CorVis ST in keratoconus and subclinical keratoconus]. Wu Y; Li XL; Yang SL; Yan XM; Li HL Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Oct; 51(5):881-886. PubMed ID: 31624393 [TBL] [Abstract][Full Text] [Related]
18. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Arbelaez MC; Versaci F; Vestri G; Barboni P; Savini G Ophthalmology; 2012 Nov; 119(11):2231-8. PubMed ID: 22892148 [TBL] [Abstract][Full Text] [Related]
19. Subclinical keratoconus detection with three-dimensional (3-D) morphogeometric and volumetric analysis. Toprak I; Cavas F; Velázquez JS; Alio Del Barrio JL; Alio JL Acta Ophthalmol; 2020 Dec; 98(8):e933-e942. PubMed ID: 32410342 [TBL] [Abstract][Full Text] [Related]
20. Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity. Herber R; Pillunat LE; Raiskup F Eye Vis (Lond); 2021 Jun; 8(1):21. PubMed ID: 34059127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]