These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34575562)

  • 1. Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose
    Dominik M; Vraníková B; Svačinová P; Elbl J; Pavloková S; Prudilová BB; Šklubalová Z; Franc A
    Pharmaceutics; 2021 Sep; 13(9):. PubMed ID: 34575562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-Processed Excipients for Dispersible Tablets-Part 1: Manufacturability.
    Bowles BJ; Dziemidowicz K; Lopez FL; Orlu M; Tuleu C; Edwards AJ; Ernest TB
    AAPS PharmSciTech; 2018 Aug; 19(6):2598-2609. PubMed ID: 29916193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the properties of tablets from coprocessed dry binders composed of alpha-lactose monohydrate and different types of cellulose.
    Muzíková J; Zvolánková J
    Ceska Slov Farm; 2007 Dec; 56(6):269-75. PubMed ID: 18257417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of cellactose with two ad hoc processed lactose-cellulose blends as direct compression excipients.
    Casalderrey M; Souto C; Concheiro A; Gómez-Amoza JL; Martínez-Pacheco R
    Chem Pharm Bull (Tokyo); 2000 Apr; 48(4):458-63. PubMed ID: 10783061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation.
    Hauschild K; Picker-Freyer KM
    AAPS PharmSci; 2004 May; 6(2):e16. PubMed ID: 15760046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellactose a co-processed excipient: a comparison study.
    Arida AI; Al-Tabakha MM
    Pharm Dev Technol; 2008; 13(2):165-75. PubMed ID: 18379907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of drug loading capacity of cellactose with two ad hoc processed lactose-cellulose direct compression excipients.
    Casalderrey M; Souto C; Concheiro A; Gómez-Amoza JL; Martínez-Pacheco R
    Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):398-401. PubMed ID: 15056951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of a novel coprocessed dry binder composed of α-lactose monohydrate, microcrystalline cellulose and corn starch.
    Mužíková J; Srbová A; Svačinová P
    Pharm Dev Technol; 2017 Dec; 22(8):964-971. PubMed ID: 26758475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of rheological and tableting properties of lubricated mixtures of co-processed dry binders for orally disintegrating tablets.
    Tranová T; Macho O; Loskot J; Mužíková J
    Eur J Pharm Sci; 2022 Jan; 168():106035. PubMed ID: 34634469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Lactose-Based Direct Tableting Agents' Compressibility Behavior Using a Compaction Simulator.
    Özalp Y; Onayo MM; Jiwa N
    Turk J Pharm Sci; 2020 Aug; 17(4):367-371. PubMed ID: 32939131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation.
    Hauschild K; Picker KM
    AAPS J; 2004; 6(2):27-38. PubMed ID: 18465268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of co-processed lactose and microcrystalline cellulose with their physical mixtures in the formulation of folic acid tablets.
    Michoel A; Rombaut P; Verhoye A
    Pharm Dev Technol; 2002 Jan; 7(1):79-87. PubMed ID: 11852699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Evaluation of a Novel Biosourced Co-Processed Excipient in Direct Compression and Drug Release.
    Benabbas R; Sanchez-Ballester NM; Aubert A; Sharkawi T; Bataille B; Soulairol I
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33807048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the compaction mechanisms of lactose-based direct compression excipients using indentation hardness and Heckel plots.
    Monedero Perales MD; Muñoz-Ruiz A; Velasco Antequera MV; Jiménez-Castellanos Ballesteros MR
    J Pharm Pharmacol; 1994 Mar; 46(3):177-81. PubMed ID: 8027923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Filler Effects on the Compounding of Freeze-dried Orodispersible Tablets Containing Annona muricata Extract.
    Azman SEN; Abd Razak FS; Kamal WHBW; Zheng GK; Ming LC; Uddin AH; Sarker ZI; Bin LK
    Int J Pharm Compd; 2020; 24(6):509-514. PubMed ID: 33217741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of the degree of intimate mixing on the compaction properties of materials produced by crystallo-co-spray drying.
    McDonagh AF; Duff B; Brennan L; Tajber L
    Eur J Pharm Sci; 2020 Nov; 154():105505. PubMed ID: 32777259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new parameter for characterization of tablet friability based on a systematical study of five excipients.
    Zhao H; Yu Y; Ni N; Zhao L; Lin X; Wang Y; Du R; Shen L
    Int J Pharm; 2022 Jan; 611():121339. PubMed ID: 34864121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physico-Mechanical Properties of Coprocessed Excipient MicroceLac® 100 by DM(3) Approach.
    Haware RV; Kancharla JP; Udupa AK; Staton S; Gupta MR; Al-Achi A; Stagner WC
    Pharm Res; 2015 Nov; 32(11):3618-35. PubMed ID: 26055403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding Deformation Behavior and Compression Speed Effect in Gabapentin Compacts.
    Roopwani R; Buckner IS
    J Pharm Sci; 2021 May; 110(5):2157-2166. PubMed ID: 33359044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of different approaches for preparation of chlorzoxazone orodispersible tablets.
    Moqbel HA; ElMeshad AN; El-Nabarawi MA
    Drug Dev Ind Pharm; 2017 May; 43(5):742-750. PubMed ID: 27534668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.