These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34575640)

  • 1. Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning.
    Choi JM; Seo SY; Kim PJ; Kim YS; Lee SH; Sohn JH; Kim DK; Lee JJ; Kim C
    J Pers Med; 2021 Aug; 11(9):. PubMed ID: 34575640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Stroke Outcome Using Natural Language Processing-Based Machine Learning of Radiology Report of Brain MRI.
    Heo TS; Kim YS; Choi JM; Jeong YS; Seo SY; Lee JH; Jeon JP; Kim C
    J Pers Med; 2020 Dec; 10(4):. PubMed ID: 33339385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Machine Learning Models for Predicting Post-Thrombolysis Hemorrhagic Transformation in Acute Ischemic Stroke Patients: A Systematic Review and Meta-Analysis.
    Jiang YL; Zhao QS; Li A; Wu ZB; Liu LL; Lin F; Li YF
    Clin Appl Thromb Hemost; 2024; 30():10760296241279800. PubMed ID: 39262220
    [No Abstract]   [Full Text] [Related]  

  • 4. Machine Learning-Based Clinical Prediction Models for Acute Ischemic Stroke Based on Serum Xanthine Oxidase Levels.
    Chen X; Zeng Q; Tao L; Yuan J; Hang J; Lu G; Shao J; Li Y; Yu H
    World Neurosurg; 2024 Apr; 184():e695-e707. PubMed ID: 38340801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-Based Model for Prediction of Hemorrhage Transformation in Acute Ischemic Stroke After Alteplase.
    Xu Y; Li X; Wu D; Zhang Z; Jiang A
    Front Neurol; 2022; 13():897903. PubMed ID: 35756919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A clinical-radiomics model based on noncontrast computed tomography to predict hemorrhagic transformation after stroke by machine learning: a multicenter study.
    Ren H; Song H; Wang J; Xiong H; Long B; Gong M; Liu J; He Z; Liu L; Jiang X; Li L; Li H; Cui S; Li Y
    Insights Imaging; 2023 Mar; 14(1):52. PubMed ID: 36977913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A weakly supervised deep learning model integrating noncontrasted computed tomography images and clinical factors facilitates haemorrhagic transformation prediction after intravenous thrombolysis in acute ischaemic stroke patients.
    Ru X; Zhao S; Chen W; Wu J; Yu R; Wang D; Dong M; Wu Q; Peng D; Song Y
    Biomed Eng Online; 2023 Dec; 22(1):129. PubMed ID: 38115029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.
    Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S
    Front Neurol; 2023; 14():1185447. PubMed ID: 37614971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing machine learning models based on non-contrast CT radiomics to predict hemorrhagic transformation after stoke: a two-center study.
    Zhang Y; Xie G; Zhang L; Li J; Tang W; Wang D; Yang L; Li K
    Front Neurol; 2024; 15():1413795. PubMed ID: 39286806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting post-stroke pneumonia using deep neural network approaches.
    Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y
    Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning approach for hemorrhagic transformation prediction: Capturing predictors' interaction.
    Elsaid AF; Fahmi RM; Shehta N; Ramadan BM
    Front Neurol; 2022; 13():951401. PubMed ID: 36504664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning-based model for prediction of hemorrhagic transformation after stroke.
    Jiang L; Zhou L; Yong W; Cui J; Geng W; Chen H; Zou J; Chen Y; Yin X; Chen YC
    Brain Pathol; 2023 Mar; 33(2):e13023. PubMed ID: 34608705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a prognostic model predicting symptomatic hemorrhagic transformation in acute ischemic stroke at scale in the OHDSI network.
    Wang Q; Reps JM; Kostka KF; Ryan PB; Zou Y; Voss EA; Rijnbeek PR; Chen R; Rao GA; Morgan Stewart H; Williams AE; Williams RD; Van Zandt M; Falconer T; Fernandez-Chas M; Vashisht R; Pfohl SR; Shah NH; Kasthurirathne SN; You SC; Jiang Q; Reich C; Zhou Y
    PLoS One; 2020; 15(1):e0226718. PubMed ID: 31910437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning.
    Lee M; Yeo NY; Ahn HJ; Lim JS; Kim Y; Lee SH; Oh MS; Lee BC; Yu KH; Kim C
    Alzheimers Res Ther; 2023 Aug; 15(1):147. PubMed ID: 37653560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable Machine Learning Techniques To Predict Amiodarone-Induced Thyroid Dysfunction Risk: Multicenter, Retrospective Study With External Validation.
    Lu YT; Chao HJ; Chiang YC; Chen HY
    J Med Internet Res; 2023 Feb; 25():e43734. PubMed ID: 36749620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI.
    Yu Y; Guo D; Lou M; Liebeskind D; Scalzo F
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2058-2065. PubMed ID: 29989941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new nomogram for individualized prediction of the probability of hemorrhagic transformation after intravenous thrombolysis for ischemic stroke patients.
    Wu Y; Chen H; Liu X; Cai X; Kong Y; Wang H; Zhou Y; Zhu J; Zhang L; Fang Q; Li T
    BMC Neurol; 2020 Nov; 20(1):426. PubMed ID: 33234113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study.
    Su PY; Wei YC; Luo H; Liu CH; Huang WY; Chen KF; Lin CP; Wei HY; Lee TH
    JMIR Med Inform; 2022 Mar; 10(3):e32508. PubMed ID: 35072631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Machine Learning Algorithms to Predict the Outcomes of Mechanical Thrombectomy in Acute Ischemic Stroke Patients With an Extended Therapeutic Time Window.
    Lu S; Zhang J; Wu R; Cao Y; Xu X; Li G; Liu S; Shi H; Wu F
    J Comput Assist Tomogr; 2022 Sep-Oct 01; 46(5):775-780. PubMed ID: 35675699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive accuracy of an ADC map for hemorrhagic transformation in acute ischemic stroke patients after successful recanalization with endovascular therapy.
    Liu H; Li T; Ding Y; Zhu L; Hui FK; Zhou T; Hernesniemi JA; He Y; He Y
    Ann Transl Med; 2022 May; 10(10):591. PubMed ID: 35722434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.