These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34575640)

  • 21. Predicting 30-Day Readmission for Stroke Using Machine Learning Algorithms: A Prospective Cohort Study.
    Chen YC; Chung JH; Yeh YJ; Lou SJ; Lin HF; Lin CH; Hsien HH; Hung KW; Yeh SJ; Shi HY
    Front Neurol; 2022; 13():875491. PubMed ID: 35860493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A machine learning model for visualization and dynamic clinical prediction of stroke recurrence in acute ischemic stroke patients: A real-world retrospective study.
    Wang K; Shi Q; Sun C; Liu W; Yau V; Xu C; Liu H; Sun C; Yin C; Wei X; Li W; Rong L
    Front Neurosci; 2023; 17():1130831. PubMed ID: 37051146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of machine learning-based models to boost the predictive power of the SPAN index.
    Chung CC; Bamodu OA; Hong CT; Chan L; Chiu HW
    Int J Neurosci; 2023 Jan; 133(1):26-36. PubMed ID: 33499706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial intelligence/machine learning for neuroimaging to predict hemorrhagic transformation: Systematic review/meta-analysis.
    Dagher R; Ozkara BB; Karabacak M; Dagher SA; Rumbaut EI; Luna LP; Yedavalli VS; Wintermark M
    J Neuroimaging; 2024; 34(5):505-514. PubMed ID: 39034604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Establishment and evaluation of a predictive model for early neurological deterioration after intravenous thrombolysis in acute ischemic stroke based on machine learning].
    Lyu Z; Yang H; Wang Y; Chen X; Zhang C; Wang W
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Sep; 35(9):945-950. PubMed ID: 37803953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction and Evaluation of Machine Learning Algorithm for Prediction of Blood Transfusion during Cesarean Section and Analysis of Risk Factors of Hypothermia during Anesthesia Recovery.
    Ren W; Li D; Wang J; Zhang J; Fu Z; Yao Y
    Comput Math Methods Med; 2022; 2022():8661324. PubMed ID: 35465016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning-Based Model for Predicting Incidence and Severity of Acute Ischemic Stroke in Anterior Circulation Large Vessel Occlusion.
    Cui J; Yang J; Zhang K; Xu G; Zhao R; Li X; Liu L; Zhu Y; Zhou L; Yu P; Xu L; Li T; Tian J; Zhao P; Yuan S; Wang Q; Guo L; Liu X
    Front Neurol; 2021; 12():749599. PubMed ID: 34925213
    [No Abstract]   [Full Text] [Related]  

  • 28. Using machine learning to predict stroke-associated pneumonia in Chinese acute ischaemic stroke patients.
    Li X; Wu M; Sun C; Zhao Z; Wang F; Zheng X; Ge W; Zhou J; Zou J
    Eur J Neurol; 2020 Aug; 27(8):1656-1663. PubMed ID: 32374076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radiomics-based prediction of hemorrhage expansion among patients with thrombolysis/thrombectomy related-hemorrhagic transformation using machine learning.
    Liu J; Tao W; Wang Z; Chen X; Wu B; Liu M
    Ther Adv Neurol Disord; 2021; 14():17562864211060029. PubMed ID: 35173809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison Between Statistical Model and Machine Learning Methods for Predicting the Risk of Renal Function Decline Using Routine Clinical Data in Health Screening.
    Cao X; Lin Y; Yang B; Li Y; Zhou J
    Risk Manag Healthc Policy; 2022; 15():817-826. PubMed ID: 35502445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting 6-Month Unfavorable Outcome of Acute Ischemic Stroke Using Machine Learning.
    Li X; Pan X; Jiang C; Wu M; Liu Y; Wang F; Zheng X; Yang J; Sun C; Zhu Y; Zhou J; Wang S; Zhao Z; Zou J
    Front Neurol; 2020; 11():539509. PubMed ID: 33329298
    [No Abstract]   [Full Text] [Related]  

  • 32. Predictive effects of S100β and CRP levels on hemorrhagic transformation in patients with AIS after intravenous thrombolysis: A concise review based on our center experience.
    Chen R; Jiang G; Liu Y; Pan H; Yan L; Zhao L; Zhao Y; Ji Q
    Medicine (Baltimore); 2023 Sep; 102(38):e35149. PubMed ID: 37747023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early Prediction of Functional Outcomes After Acute Ischemic Stroke Using Unstructured Clinical Text: Retrospective Cohort Study.
    Sung SF; Hsieh CY; Hu YH
    JMIR Med Inform; 2022 Feb; 10(2):e29806. PubMed ID: 35175201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Clinical Outcome in Patients with Large-Vessel Acute Ischemic Stroke: Performance of Machine Learning versus SPAN-100.
    Jiang B; Zhu G; Xie Y; Heit JJ; Chen H; Li Y; Ding V; Eskandari A; Michel P; Zaharchuk G; Wintermark M
    AJNR Am J Neuroradiol; 2021 Jan; 42(2):240-246. PubMed ID: 33414230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The predictors of death within 1 year in acute ischemic stroke patients based on machine learning.
    Wang K; Gu L; Liu W; Xu C; Yin C; Liu H; Rong L; Li W; Wei X
    Front Neurol; 2023; 14():1092534. PubMed ID: 36908612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutrophil to High-Density Lipoprotein Ratio is Associated with Hemorrhagic Transformation in Patients with Acute Ischemic Stroke.
    Zhang R; Jin F; Zheng L; Liao T; Guan G; Wang J; Zhao S; Fei S; Chu Z; Xu Y
    J Inflamm Res; 2022; 15():6073-6085. PubMed ID: 36386588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-Contrasted CT Radiomics for SAH Prognosis Prediction.
    Shan D; Wang J; Qi P; Lu J; Wang D
    Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different Scores Predict the Value of Hemorrhagic Transformation after Intravenous Thrombolysis in Patients with Acute Ischemic Stroke.
    Chang X; Zhang X; Zhang G
    Evid Based Complement Alternat Med; 2021; 2021():2468052. PubMed ID: 34721622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning.
    Zhang L; Zhou X; Cao J
    PeerJ; 2024; 12():e16867. PubMed ID: 38313005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years.
    Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH
    Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.