These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 34575806)
21. Genome mining and functional genomics for siderophore production in Aspergillus niger. Franken AC; Lechner BE; Werner ER; Haas H; Lokman BC; Ram AF; van den Hondel CA; de Weert S; Punt PJ Brief Funct Genomics; 2014 Nov; 13(6):482-92. PubMed ID: 25062661 [TBL] [Abstract][Full Text] [Related]
22. Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. Müller G; Matzanke BF; Raymond KN J Bacteriol; 1984 Oct; 160(1):313-8. PubMed ID: 6480558 [TBL] [Abstract][Full Text] [Related]
23. Optimization of triacetylfusarinine C and ferricrocin productions in Aspergillus fumigatus. Szigeti ZM; Szaniszló S; Fazekas E; Gyémánt G; Szabon J; Antal K; Emri T; Balla J; Balla G; Csernoch L; Pócsi I Acta Microbiol Immunol Hung; 2014 Jun; 61(2):107-19. PubMed ID: 24939680 [TBL] [Abstract][Full Text] [Related]
24. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Lesuisse E; Knight SA; Camadro JM; Dancis A Yeast; 2002 Mar; 19(4):329-40. PubMed ID: 11870856 [TBL] [Abstract][Full Text] [Related]
25. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. Yun CW; Bauler M; Moore RE; Klebba PE; Philpott CC J Biol Chem; 2001 Mar; 276(13):10218-23. PubMed ID: 11120744 [TBL] [Abstract][Full Text] [Related]
26. EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of Aspergillus fumigatus. Kragl C; Schrettl M; Abt B; Sarg B; Lindner HH; Haas H Eukaryot Cell; 2007 Aug; 6(8):1278-85. PubMed ID: 17586718 [TBL] [Abstract][Full Text] [Related]
27. Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. Wiebe C; Winkelmann G J Bacteriol; 1975 Sep; 123(3):837-42. PubMed ID: 1099079 [TBL] [Abstract][Full Text] [Related]
28. The role of FoxA, FiuA, and FpvB in iron acquisition via hydroxamate-type siderophores in Pseudomonas aeruginosa. Will V; Frey C; Normant V; Kuhn L; Chicher J; Volck F; Schalk IJ Sci Rep; 2024 Aug; 14(1):18795. PubMed ID: 39138320 [TBL] [Abstract][Full Text] [Related]
29. Site-specific rate constants for iron acquisition from transferrin by the Aspergillus fumigatus siderophores N',N'',N'''-triacetylfusarinine C and ferricrocin. Hissen AH; Moore MM J Biol Inorg Chem; 2005 May; 10(3):211-20. PubMed ID: 15770504 [TBL] [Abstract][Full Text] [Related]
30. Utilization of microbial siderophores in iron acquisition by oat. Crowley DE; Reid CP; Szaniszlo PJ Plant Physiol; 1988 Jul; 87(3):680-5. PubMed ID: 16666207 [TBL] [Abstract][Full Text] [Related]
31. SreA-mediated iron regulation in Aspergillus fumigatus. Schrettl M; Kim HS; Eisendle M; Kragl C; Nierman WC; Heinekamp T; Werner ER; Jacobsen I; Illmer P; Yi H; Brakhage AA; Haas H Mol Microbiol; 2008 Oct; 70(1):27-43. PubMed ID: 18721228 [TBL] [Abstract][Full Text] [Related]
32. FoxB of Pseudomonas aeruginosa functions in the utilization of the xenosiderophores ferrichrome, ferrioxamine B, and schizokinen: evidence for transport redundancy at the inner membrane. Cuív PO; Keogh D; Clarke P; O'Connell M J Bacteriol; 2007 Jan; 189(1):284-7. PubMed ID: 17056746 [TBL] [Abstract][Full Text] [Related]
33. Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. Hördt W; Römheld V; Winkelmann G Biometals; 2000 Mar; 13(1):37-46. PubMed ID: 10831223 [TBL] [Abstract][Full Text] [Related]
34. The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Eisendle M; Oberegger H; Zadra I; Haas H Mol Microbiol; 2003 Jul; 49(2):359-75. PubMed ID: 12828635 [TBL] [Abstract][Full Text] [Related]
35. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Hissen AH; Wan AN; Warwas ML; Pinto LJ; Moore MM Infect Immun; 2005 Sep; 73(9):5493-503. PubMed ID: 16113265 [TBL] [Abstract][Full Text] [Related]
36. Effects of the Aspergillus fumigatus siderophore systems on the regulation of macrophage immune effector pathways and iron homeostasis. Seifert M; Nairz M; Schroll A; Schrettl M; Haas H; Weiss G Immunobiology; 2008; 213(9-10):767-78. PubMed ID: 18926292 [TBL] [Abstract][Full Text] [Related]
37. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Petrik M; Haas H; Schrettl M; Helbok A; Blatzer M; Decristoforo C Nucl Med Biol; 2012 Apr; 39(3):361-9. PubMed ID: 22172389 [TBL] [Abstract][Full Text] [Related]
38. Illuminating Siderophore Transporter Functionality with Thiopeptide Antibiotics. Dolan SK mBio; 2023 Apr; 14(2):e0332622. PubMed ID: 36946760 [TBL] [Abstract][Full Text] [Related]
39. Survival of Aspergillus fumigatus in serum involves removal of iron from transferrin: the role of siderophores. Hissen AH; Chow JM; Pinto LJ; Moore MM Infect Immun; 2004 Mar; 72(3):1402-8. PubMed ID: 14977945 [TBL] [Abstract][Full Text] [Related]
40. The Bradyrhizobium japonicum exporter ExsFGH is involved in efflux of ferric xenosiderophores from the periplasm. Ong A; O'Brian MR PLoS One; 2024; 19(1):e0296306. PubMed ID: 38166112 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]