BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 34575960)

  • 1. Nitrosative Stress and Human Disease: Therapeutic Potential of Denitrosylation.
    Yoon S; Eom GH; Kang G
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular S-denitrosylases: Potential role and interplay of Thioredoxin, TRP14, and Glutaredoxin systems in thiol-dependent protein denitrosylation.
    Chatterji A; Sengupta R
    Int J Biochem Cell Biol; 2021 Feb; 131():105904. PubMed ID: 33359085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation.
    Sengupta R; Holmgren A
    Antioxid Redox Signal; 2013 Jan; 18(3):259-69. PubMed ID: 22702224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrosative stress inhibits aminoacylation and editing activities of mitochondrial threonyl-tRNA synthetase by S-nitrosation.
    Zheng WQ; Zhang Y; Yao Q; Chen Y; Qiao X; Wang ED; Chen C; Zhou XL
    Nucleic Acids Res; 2020 Jul; 48(12):6799-6810. PubMed ID: 32484546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetic analysis of nitrosative stress.
    Foster MW; Liu L; Zeng M; Hess DT; Stamler JS
    Biochemistry; 2009 Feb; 48(4):792-9. PubMed ID: 19138101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxin-interacting protein (Txnip) is a feedback regulator of S-nitrosylation.
    Forrester MT; Seth D; Hausladen A; Eyler CE; Foster MW; Matsumoto A; Benhar M; Marshall HE; Stamler JS
    J Biol Chem; 2009 Dec; 284(52):36160-36166. PubMed ID: 19847012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein denitrosylation: enzymatic mechanisms and cellular functions.
    Benhar M; Forrester MT; Stamler JS
    Nat Rev Mol Cell Biol; 2009 Oct; 10(10):721-32. PubMed ID: 19738628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues.
    Tichá T; Lochman J; Činčalová L; Luhová L; Petřivalský M
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):27-33. PubMed ID: 29061305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents.
    Kronenfeld G; Engelman R; Weisman-Shomer P; Atlas D; Benhar M
    Free Radic Biol Med; 2015 Feb; 79():138-46. PubMed ID: 25483557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase.
    Zhao Y; He M; Ding J; Xi Q; Loake GJ; Zheng W
    Sci Rep; 2016 Nov; 6():37601. PubMed ID: 27869186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur Denitrosylation by an Engineered Trx-like DsbG Enzyme Identifies Nucleophilic Cysteine Hydrogen Bonds as Key Functional Determinant.
    Lafaye C; Van Molle I; Tamu Dufe V; Wahni K; Boudier A; Leroy P; Collet JF; Messens J
    J Biol Chem; 2016 Jul; 291(29):15020-8. PubMed ID: 27226614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach.
    Wu C; Parrott AM; Liu T; Jain MR; Yang Y; Sadoshima J; Li H
    J Proteomics; 2011 Oct; 74(11):2498-509. PubMed ID: 21704743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thioredoxin-Dependent Decomposition of Protein S-Nitrosothiols.
    Kneeshaw S; Spoel SH
    Methods Mol Biol; 2018; 1747():281-297. PubMed ID: 29600467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress enhances and modulates protein S-nitrosation in smooth muscle cells exposed to S-nitrosoglutathione.
    Belcastro E; Wu W; Fries-Raeth I; Corti A; Pompella A; Leroy P; Lartaud I; Gaucher C
    Nitric Oxide; 2017 Sep; 69():10-21. PubMed ID: 28743484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the role of S-nitrosylation/nitrosative stress in inflammation and the role of cellular denitrosylases in inflammation modulation: Implications in health and diseases.
    Chatterji A; Banerjee D; Billiar TR; Sengupta R
    Free Radic Biol Med; 2021 Aug; 172():604-621. PubMed ID: 34245859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIF-1 alpha protein as a target for S-nitrosation.
    Sumbayev VV; Budde A; Zhou J; Brüne B
    FEBS Lett; 2003 Jan; 535(1-3):106-12. PubMed ID: 12560087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic profiling of nitrosative stress: protein S-oxidation accompanies S-nitrosylation.
    Wang YT; Piyankarage SC; Williams DL; Thatcher GR
    ACS Chem Biol; 2014 Mar; 9(3):821-30. PubMed ID: 24397869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrosative Stress, Hypernitrosylation, and Autoimmune Responses to Nitrosylated Proteins: New Pathways in Neuroprogressive Disorders Including Depression and Chronic Fatigue Syndrome.
    Morris G; Berk M; Klein H; Walder K; Galecki P; Maes M
    Mol Neurobiol; 2017 Aug; 54(6):4271-4291. PubMed ID: 27339878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation.
    Kalinina E; Novichkova M
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33467703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.