These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34576004)

  • 41. High transcript abundance, RNA editing, and small RNAs in intergenic regions within the massive mitochondrial genome of the angiosperm Silene noctiflora.
    Wu Z; Stone JD; Štorchová H; Sloan DB
    BMC Genomics; 2015 Nov; 16():938. PubMed ID: 26573088
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA editing restores critical domains of a group I intron in fern mitochondria.
    Bégu D; Castandet B; Araya A
    Curr Genet; 2011 Oct; 57(5):317-25. PubMed ID: 21701904
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The dual-targeted RNA editing factor AEF1 is universally conserved among angiosperms and reveals only minor adaptations upon loss of its chloroplast or its mitochondrial target.
    Hein A; Brenner S; Polsakiewicz M; Knoop V
    Plant Mol Biol; 2020 Jan; 102(1-2):185-198. PubMed ID: 31797248
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RNA editing status of nad7 intron domains in wheat mitochondria.
    Carrillo C; Bonen L
    Nucleic Acids Res; 1997 Jan; 25(2):403-9. PubMed ID: 9016571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A combinatorial role for exon, intron and splice site sequences in splicing in maize.
    Carle-Urioste JC; Brendel V; Walbot V
    Plant J; 1997 Jun; 11(6):1253-63. PubMed ID: 9225466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs.
    LaRoche-Johnston F; Monat C; Coulombe S; Cousineau B
    PLoS Genet; 2018 Nov; 14(11):e1007792. PubMed ID: 30462638
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Splicing of many human genes involves sites embedded within introns.
    Kelly S; Georgomanolis T; Zirkel A; Diermeier S; O'Reilly D; Murphy S; Längst G; Cook PR; Papantonis A
    Nucleic Acids Res; 2015 May; 43(9):4721-32. PubMed ID: 25897131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide mapping of alternative splicing in Arabidopsis thaliana.
    Filichkin SA; Priest HD; Givan SA; Shen R; Bryant DW; Fox SE; Wong WK; Mockler TC
    Genome Res; 2010 Jan; 20(1):45-58. PubMed ID: 19858364
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The application of RNA-seq to the comprehensive analysis of plant mitochondrial transcriptomes.
    Stone JD; Storchova H
    Mol Genet Genomics; 2015 Feb; 290(1):1-9. PubMed ID: 25182379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes.
    Hecht J; Grewe F; Knoop V
    Genome Biol Evol; 2011; 3():344-58. PubMed ID: 21436122
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential RNA editing in closely related introns in Oenothera mitochondria.
    Lippok B; Brennicke A; Wissinger B
    Mol Gen Genet; 1994 Apr; 243(1):39-46. PubMed ID: 7514712
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep RNA sequencing reveals the smallest known mitochondrial micro exon in animals: The placozoan cox1 single base pair exon.
    Osigus HJ; Eitel M; Schierwater B
    PLoS One; 2017; 12(5):e0177959. PubMed ID: 28542197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative Mitogenomic Analysis Reveals Gene and Intron Dynamics in Rubiaceae and Intra-Specific Diversification in
    Han EK; Cho WB; Tamaki I; Choi IS; Lee JH
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Splicing and editing of ionotropic glutamate receptors: a comprehensive analysis based on human RNA-Seq data.
    Herbrechter R; Hube N; Buchholz R; Reiner A
    Cell Mol Life Sci; 2021 Jul; 78(14):5605-5630. PubMed ID: 34100982
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Editing of pre-mRNAs can occur before cis- and trans-splicing in Petunia mitochondria.
    Sutton CA; Conklin PL; Pruitt KD; Hanson MR
    Mol Cell Biol; 1991 Aug; 11(8):4274-7. PubMed ID: 1712907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes.
    Salmans ML; Chaw SM; Lin CP; Shih AC; Wu YW; Mulligan RM
    Curr Genet; 2010 Oct; 56(5):439-46. PubMed ID: 20617318
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort.
    Malek O; Knoop V
    RNA; 1998 Dec; 4(12):1599-609. PubMed ID: 9848656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A pioneer protein is part of a large complex involved in trans-splicing of a group II intron in the chloroplast of Chlamydomonas reinhardtii.
    Lefebvre-Legendre L; Reifschneider O; Kollipara L; Sickmann A; Wolters D; Kück U; Goldschmidt-Clermont M
    Plant J; 2016 Jan; 85(1):57-69. PubMed ID: 26611495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales.
    Nadimi M; Beaudet D; Forget L; Hijri M; Lang BF
    Mol Biol Evol; 2012 Sep; 29(9):2199-210. PubMed ID: 22411852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.