BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 34576037)

  • 1. De Novo Transcriptome Assembly, Functional Annotation, and Transcriptome Dynamics Analyses Reveal Stress Tolerance Genes in Mangrove Tree (
    Miryeganeh M; Saze H
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The First De Novo Transcriptome Assembly and Transcriptomic Dynamics of the Mangrove Tree
    Miryeganeh M; Saze H
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo genome assembly and in natura epigenomics reveal salinity-induced DNA methylation in the mangrove tree Bruguiera gymnorhiza.
    Miryeganeh M; Marlétaz F; Gavriouchkina D; Saze H
    New Phytol; 2022 Mar; 233(5):2094-2110. PubMed ID: 34532854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress.
    Miyama M; Tada Y
    Plant Mol Biol; 2008 Sep; 68(1-2):119-29. PubMed ID: 18568404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of the mangrove plant Bruguiera gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening.
    Yamanaka T; Miyama M; Tada Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):304-10. PubMed ID: 19202291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Analysis of Ceriops tagal in Saline Environments Using RNA-Sequencing.
    Xiao X; Hong Y; Xia W; Feng S; Zhou X; Fu X; Zang J; Xiao Y; Niu X; Li C; Chen Y
    PLoS One; 2016; 11(12):e0167551. PubMed ID: 27936168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance.
    Das P; Majumder AL
    Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba.
    Feng X; Xu S; Li J; Yang Y; Chen Q; Lyu H; Zhong C; He Z; Shi S
    BMC Plant Biol; 2020 Apr; 20(1):178. PubMed ID: 32321423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-dependent increase in triterpenoids is reversible upon transfer to fresh water in mangrove plants Kandelia candel and Bruguiera gymnorrhiza.
    Basyuni M; Baba S; Kinjo Y; Putri LA; Hakim L; Oku H
    J Plant Physiol; 2012 Dec; 169(18):1903-8. PubMed ID: 22921677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress.
    Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X
    Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity.
    Yaish MW; Patankar HV; Assaha DVM; Zheng Y; Al-Yahyai R; Sunkar R
    BMC Genomics; 2017 Mar; 18(1):246. PubMed ID: 28330456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of a hybrid mangrove, Bruguiera hainesii, and its two ancestral contributors, Bruguiera cylindrica and Bruguiera gymnorhiza.
    Shearman JR; Naktang C; Sonthirod C; Kongkachana W; U-Thoomporn S; Jomchai N; Maknual C; Yamprasai S; Promchoo W; Ruang-Areerate P; Pootakham W; Tangphatsornruang S
    Genomics; 2022 May; 114(3):110382. PubMed ID: 35526741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum).
    Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H
    BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of Transcriptomes in Rhizophoraceae Provides Insights into the Origin and Adaptive Evolution of Mangrove Plants in Intertidal Environments.
    Guo W; Wu H; Zhang Z; Yang C; Hu L; Shi X; Jian S; Shi S; Huang Y
    Front Plant Sci; 2017; 8():795. PubMed ID: 28559911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.
    Takahashi F; Tilbrook J; Trittermann C; Berger B; Roy SJ; Seki M; Shinozaki K; Tester M
    PLoS One; 2015; 10(8):e0133322. PubMed ID: 26244554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population.
    Gruber MY; Xia J; Yu M; Steppuhn H; Wall K; Messer D; Sharpe AG; Acharya SN; Wishart DS; Johnson D; Miller DR; Taheri A
    Genome; 2017 Feb; 60(2):104-127. PubMed ID: 28045337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress.
    Yang L; Jin Y; Huang W; Sun Q; Liu F; Huang X
    BMC Genomics; 2018 Sep; 19(1):717. PubMed ID: 30261913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings.
    Song Q; Joshi M; Joshi V
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32839408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.