These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34576084)

  • 21. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hard Carbons for Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms.
    Wahid M; Puthusseri D; Gawli Y; Sharma N; Ogale S
    ChemSusChem; 2018 Feb; 11(3):506-526. PubMed ID: 29098791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.
    Sun XG; Wang X; Mayes RT; Dai S
    ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved power generation using nitrogen-doped 3D graphite foam anodes in microbial fuel cells.
    Guo W; Chao S; Chen Q
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):143-151. PubMed ID: 31535224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.
    Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z
    Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors.
    Sennu P; Aravindan V; Ganesan M; Lee YG; Lee YS
    ChemSusChem; 2016 Apr; 9(8):849-54. PubMed ID: 26990699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.
    Zhang Z; Zhang M; Wang Y; Tan Q; Lv X; Zhong Z; Li H; Su F
    Nanoscale; 2013 Jun; 5(12):5384-9. PubMed ID: 23652614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sustainable conversion of biomass to rationally designed lithium-ion battery graphite.
    Banek NA; McKenzie KR; Abele DT; Wagner MJ
    Sci Rep; 2022 May; 12(1):8080. PubMed ID: 35577817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid.
    Wu XL; Chen LL; Xin S; Yin YX; Guo YG; Kong QS; Xia YZ
    ChemSusChem; 2010 Jun; 3(6):703-7. PubMed ID: 20480495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries.
    Bhattacharjya D; Park HY; Kim MS; Choi HS; Inamdar SN; Yu JS
    Langmuir; 2014 Jan; 30(1):318-24. PubMed ID: 24345084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LiFePO4 mesocrystals for lithium-ion batteries.
    Popovic J; Demir-Cakan R; Tornow J; Morcrette M; Su DS; Schlögl R; Antonietti M; Titirici MM
    Small; 2011 Apr; 7(8):1127-35. PubMed ID: 21449048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron-Catalyzed Graphitic Carbon Materials from Biomass Resources as Anodes for Lithium-Ion Batteries.
    Gomez-Martin A; Martinez-Fernandez J; Ruttert M; Heckmann A; Winter M; Placke T; Ramirez-Rico J
    ChemSusChem; 2018 Aug; 11(16):2776-2787. PubMed ID: 29870144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries.
    Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A High-Voltage and High-Capacity Li1+x Ni0.5 Mn1.5 O4 Cathode Material: From Synthesis to Full Lithium-Ion Cells.
    Mancini M; Axmann P; Gabrielli G; Kinyanjui M; Kaiser U; Wohlfahrt-Mehrens M
    ChemSusChem; 2016 Jul; 9(14):1843-9. PubMed ID: 27273330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification of Spherical Graphite as Anode for Li-Ion Battery: A Comparative Study on the Purifying Approaches.
    Vu TT; La DD; Le LV; Pham TK; Nguyen MA; Nguyen TH; Dang TD; Um MJ; Chung W; Nguyen DD
    Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal Organic Frameworks Derived Fe-N-C Nanostructures as High-Performance Electrodes for Sodium Ion Batteries and Electromagnetic Interference (EMI) Shielding.
    Sridhar V; Lee I; Park H
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33671928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.