BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34576189)

  • 1. Potential of Vasoprotectives to Inhibit Non-Enzymatic Protein Glycation, and Reactive Carbonyl and Oxygen Species Uptake.
    Bednarska K; Fecka I
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.
    Maietta M; Colombo R; Lavecchia R; Sorrenti M; Zuorro A; Papetti A
    Food Res Int; 2017 Oct; 100(Pt 1):780-790. PubMed ID: 28873750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cretan tea (Origanum dictamnus L.) as a functional beverage: an investigation on antiglycative and carbonyl trapping activities.
    Maietta M; Colombo R; Corana F; Papetti A
    Food Funct; 2018 Mar; 9(3):1545-1556. PubMed ID: 29431803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspalathin and Other Rooibos Flavonoids Trapped α-Dicarbonyls and Inhibited Formation of Advanced Glycation End Products In Vitro.
    Bednarska K; Fecka I
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf (
    Fecka I; Bednarska K; Kowalczyk A
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal.
    Li X; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2014 Dec; 62(50):12152-8. PubMed ID: 25412188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-column incubation followed by fast liquid chromatography analysis for rapid screening of natural methylglyoxal scavengers directly from herbal medicines: case study of Polygonum cuspidatum.
    Tang D; Zhu JX; Wu AG; Xu YH; Duan TT; Zheng ZG; Wang RS; Li D; Zhu Q
    J Chromatogr A; 2013 Apr; 1286():102-10. PubMed ID: 23489496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems.
    Kong Y; Li X; Zheng T; Lv L
    Food Chem; 2015 Sep; 183():36-42. PubMed ID: 25863607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the Phytochemical Composition, Antioxidant Activity, and Methylglyoxal Trapping Effect of
    Bednarska K; Kuś P; Fecka I
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33317096
    [No Abstract]   [Full Text] [Related]  

  • 10. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species.
    Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT
    Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal.
    Sun YP; Gu JF; Tan XB; Wang CF; Jia XB; Feng L; Liu JP
    Mol Med Rep; 2016 Feb; 13(2):1475-86. PubMed ID: 26718010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibitory effects of natural antioxidants on protein glycation as well as aggregation induced by methylglyoxal and underlying mechanisms.
    Liu H; Huo X; Wang S; Yin Z
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112360. PubMed ID: 35131714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells.
    Zhou Q; Cheng KW; Gong J; Li ETS; Wang M
    Biochem Pharmacol; 2019 Aug; 166():231-241. PubMed ID: 31158339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions.
    Lo CY; Li S; Tan D; Pan MH; Sang S; Ho CT
    Mol Nutr Food Res; 2006 Dec; 50(12):1118-28. PubMed ID: 17103374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Methylglyoxal-Induced Histone H1 N
    Yang L; Li X; Wu Z; Feng C; Zhang T; Dai S; Dong Q
    J Agric Food Chem; 2018 Jun; 66(23):5812-5820. PubMed ID: 29758984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders.
    Saeed M; Kausar MA; Singh R; Siddiqui AJ; Akhter A
    Curr Protein Pept Sci; 2020; 21(9):846-859. PubMed ID: 32368974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Screening for active components of Sophorae Flos on inhibiting AGEs formation based on non-enzymatic glycation reaction].
    Jiang N; Wang FJ; Feng L; Jia XB
    Zhongguo Zhong Yao Za Zhi; 2019 Jul; 44(14):3100-3106. PubMed ID: 31602859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of reactive carbonyl species trapping by hydroxytyrosol under simulated physiological conditions.
    Navarro M; Morales FJ
    Food Chem; 2015 May; 175():92-9. PubMed ID: 25577056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione.
    Zhao D; Le TT; Larsen LB; Li L; Qin D; Su G; Li B
    Food Res Int; 2017 Dec; 102():313-322. PubMed ID: 29195953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.