Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34576190)

  • 1. SMAD4 Feedback Activates the Canonical TGF-β Family Signaling Pathways.
    Liu L; Li Q; Yang L; Li Q; Du X
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis.
    Du X; Pan Z; Li Q; Liu H; Li Q
    Cell Death Dis; 2018 Feb; 9(2):151. PubMed ID: 29396446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR-1306 Mediates the Feedback Regulation of the TGF-β/SMAD Signaling Pathway in Granulosa Cells.
    Yang L; Du X; Liu L; Cao Q; Pan Z; Li Q
    Cells; 2019 Mar; 8(4):. PubMed ID: 30935128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGF-β/SMAD4 signaling pathway activates the HAS2-HA system to regulate granulosa cell state.
    Li X; Du X; Yao W; Pan Z; Li Q
    J Cell Physiol; 2020 Mar; 235(3):2260-2272. PubMed ID: 31489963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4.
    Tecalco-Cruz AC; Sosa-Garrocho M; Vázquez-Victorio G; Ortiz-García L; Domínguez-Hüttinger E; Macías-Silva M
    J Biol Chem; 2012 Aug; 287(32):26764-76. PubMed ID: 22674574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDZK1-interacting protein 1 (PDZK1IP1) traps Smad4 protein and suppresses transforming growth factor-β (TGF-β) signaling.
    Ikeno S; Nakano N; Sano K; Minowa T; Sato W; Akatsu R; Sakata N; Hanagata N; Fujii M; Itoh F; Itoh S
    J Biol Chem; 2019 Mar; 294(13):4966-4980. PubMed ID: 30718277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development.
    Parada C; Li J; Iwata J; Suzuki A; Chai Y
    Mol Cell Biol; 2013 Sep; 33(17):3482-93. PubMed ID: 23816882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4.
    Yao G; Yin M; Lian J; Tian H; Liu L; Li X; Sun F
    Mol Endocrinol; 2010 Mar; 24(3):540-51. PubMed ID: 20118412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the gene transcription and apoptosis mediated by TGF-beta-Smad2/3-Smad4 signaling.
    Yu J; Zhang L; Chen A; Xiang G; Wang Y; Wu J; Mitchelson K; Cheng J; Zhou Y
    J Cell Physiol; 2008 May; 215(2):422-33. PubMed ID: 17960585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5.
    Mazerbourg S; Klein C; Roh J; Kaivo-Oja N; Mottershead DG; Korchynskyi O; Ritvos O; Hsueh AJ
    Mol Endocrinol; 2004 Mar; 18(3):653-65. PubMed ID: 14684852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor-beta- and Activin-Smad signaling pathways are activated at distinct maturation stages of the thymopoeisis.
    Rosendahl A; Speletas M; Leandersson K; Ivars F; Sideras P
    Int Immunol; 2003 Dec; 15(12):1401-14. PubMed ID: 14645149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways.
    Lei S; Dubeykovskiy A; Chakladar A; Wojtukiewicz L; Wang TC
    J Biol Chem; 2004 Oct; 279(41):42492-502. PubMed ID: 15292219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of transforming growth factor beta-Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4.
    Qiu W; Schönleben F; Li X; Su GH
    Cancer Lett; 2007 Jan; 245(1-2):163-70. PubMed ID: 16478646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MED1 Regulates BMP/TGF-β in Endothelium: Implication for Pulmonary Hypertension.
    Wang C; Xing Y; Zhang J; He M; Dong J; Chen S; Wu H; Huang HY; Chou CH; Bai L; He F; She J; Su A; Wang Y; Thistlethwaite PA; Huang HD; Yuan JX; Yuan ZY; Shyy JY
    Circ Res; 2022 Oct; 131(10):828-841. PubMed ID: 36252121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-β signaling inhibits canonical BMP signaling pathway during palate development.
    Yuan G; Zhan Y; Gou X; Chen Y; Yang G
    Cell Tissue Res; 2018 Feb; 371(2):283-291. PubMed ID: 29247325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling.
    Yan X; Liao H; Cheng M; Shi X; Lin X; Feng XH; Chen YG
    J Biol Chem; 2016 Jan; 291(1):382-92. PubMed ID: 26555259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear Respiratory Factor-1, a Novel SMAD4 Binding Protein, Represses TGF-β/SMAD4 Signaling by Functioning as a Transcriptional Cofactor.
    Rajasekaran N; Song K; Lee JH; Wei Y; Erkin ÖC; Lee H; Shin YK
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic regulation of Tgf-B signaling by Tif1γ: a computational approach.
    Andrieux G; Fattet L; Le Borgne M; Rimokh R; Théret N
    PLoS One; 2012; 7(3):e33761. PubMed ID: 22461896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes.
    Khakipoor S; Ophoven C; Schrödl-Häußel M; Feuerstein M; Heimrich B; Deitmer JW; Roussa E
    Glia; 2017 Aug; 65(8):1361-1375. PubMed ID: 28568893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins.
    Miyazono K
    Bone; 1999 Jul; 25(1):91-3. PubMed ID: 10423029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.