These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34576412)

  • 1. Chitin Cryogels Prepared by Regeneration from Phosphoric Acid Solutions.
    Tyshkunova IV; Chukhchin DG; Gofman IV; Pavlova EN; Ushakov VA; Vlasova EN; Poshina DN; Skorik YA
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical Characterization and Cytocompatibility of Cellulose Cryogels Reinforced with Chitin Nanowhiskers.
    Tyshkunova IV; Gofman IV; Chukhchin DG; Malkov AV; Mishanin AI; Golovkin AS; Pavlova EN; Poshina DN; Skorik YA
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose Cryogels as Promising Materials for Biomedical Applications.
    Tyshkunova IV; Poshina DN; Skorik YA
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices.
    Yu S; Budtova T
    Carbohydr Polym; 2024 May; 332():121925. PubMed ID: 38431419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the properties of porous chitosan: Aerogels and cryogels.
    Chartier C; Buwalda S; Van Den Berghe H; Nottelet B; Budtova T
    Int J Biol Macromol; 2022 Mar; 202():215-223. PubMed ID: 35033531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of polymeric cryogels in bioseparation.
    Lozinsky VI; Plieva FM; Galaev IY; Mattiasson B
    Bioseparation; 2001; 10(4-5):163-88. PubMed ID: 12233740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryogels: recent applications in 3D-bioprinting, injectable cryogels, drug delivery, and wound healing.
    Jones LO; Williams L; Boam T; Kalmet M; Oguike C; Hatton FL
    Beilstein J Org Chem; 2021; 17():2553-2569. PubMed ID: 34760024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials.
    Savina IN; Zoughaib M; Yergeshov AA
    Gels; 2021 Jun; 7(3):. PubMed ID: 34203439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering.
    Tripathi A; Kathuria N; Kumar A
    J Biomed Mater Res A; 2009 Sep; 90(3):680-94. PubMed ID: 18563830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Elastic Super-Macroporous Cryogels Fabricated by Thermally Induced Crosslinking of 2-Hydroxyethylcellulose with Citric Acid in Solid State.
    Bozova N; Petrov PD
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Conjugated Kefiran-Chondroitin Sulphate Cryogels with Enhanced Properties for Biomedical Applications.
    Radhouani H; Gonçalves C; Maia FR; Oliveira EP; Reis RL; Oliveira JM
    Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroporous silk fibroin cryogels.
    Ak F; Oztoprak Z; Karakutuk I; Okay O
    Biomacromolecules; 2013 Mar; 14(3):719-27. PubMed ID: 23360211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels.
    Szczurek A; Amaral-Labat G; Fierro V; Pizzi A; Celzard A
    Sci Technol Adv Mater; 2011 Jun; 12(3):035001. PubMed ID: 27877405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing of macroporous biocompatible cryogels of PVA-haemoglobin and their water sorption study.
    Bajpai AK; Saini R
    J Mater Sci Mater Med; 2009 Oct; 20(10):2063-74. PubMed ID: 19455407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of nanochitin hydrogel with adjustable inter-structure by sequencial genipin crosslinking and ice-templating under acid condition.
    Chen F; Liu Y; Zou Y; Zhu J; Liu L; Fan Y
    Int J Biol Macromol; 2022 Nov; 221():1022-1030. PubMed ID: 36075307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic/organic biocomposite cryogels for regeneration of bony tissues.
    Mishra R; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Axial Ratio Nanochitins for Ultrastrong and Shape-Recoverable Hydrogels and Cryogels via Ice Templating.
    Liu L; Bai L; Tripathi A; Yu J; Wang Z; Borghei M; Fan Y; Rojas OJ
    ACS Nano; 2019 Mar; 13(3):2927-2935. PubMed ID: 30689367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of cellulose aerogels and cryogels.
    Buchtová N; Pradille C; Bouvard JL; Budtova T
    Soft Matter; 2019 Oct; 15(39):7901-7908. PubMed ID: 31535679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration.
    Kao HH; Kuo CY; Chen KS; Chen JP
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.