These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34576421)

  • 1. Extrusion-Based 3D Printing of Calcium Magnesium Phosphate Cement Pastes for Degradable Bone Implants.
    Götz LM; Holeczek K; Groll J; Jüngst T; Gbureck U
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds.
    Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printable magnesium-based cements towards the preparation of bioceramics.
    Tonelli M; Faralli A; Ridi F; Bonini M
    J Colloid Interface Sci; 2021 Sep; 598():24-35. PubMed ID: 33892441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds with alkaline or acid post-treatment.
    Kowalewicz K; Waselau AC; Feichtner F; Schmitt AM; Brückner M; Vorndran E; Meyer-Lindenberg A
    Front Bioeng Biotechnol; 2022; 10():998254. PubMed ID: 36246367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties.
    Bagnol R; Sprecher C; Peroglio M; Chevalier J; Mahou R; Büchler P; Richards G; Eglin D
    Acta Biomater; 2021 Apr; 125():322-332. PubMed ID: 33631396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing.
    Klammert U; Vorndran E; Reuther T; Müller FA; Zorn K; Gbureck U
    J Mater Sci Mater Med; 2010 Nov; 21(11):2947-53. PubMed ID: 20740307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model.
    Golafshan N; Vorndran E; Zaharievski S; Brommer H; Kadumudi FB; Dolatshahi-Pirouz A; Gbureck U; van Weeren R; Castilho M; Malda J
    Biomaterials; 2020 Dec; 261():120302. PubMed ID: 32932172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrusion-Based 3D Printing of Ceramic Pastes: Mathematical Modeling and In Situ Shaping Retention Approach.
    Hu F; Mikolajczyk T; Pimenov DY; Gupta MK
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Bone Regeneration Capacity of Premixed Magnesium Phosphate Cement Pastes.
    Ewald A; Kreczy D; Brückner T; Gbureck U; Bengel M; Hoess A; Nies B; Bator J; Klammert U; Fuchs A
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31266228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite grafts made of polycaprolactone fiber mats and oil-based calcium phosphate cement pastes for the reconstruction of cranial and maxillofacial defects.
    Fuchs A; Bartolf-Kopp M; Böhm H; Straub A; Kübler AC; Linz C; Gbureck U
    Clin Oral Investig; 2023 Jun; 27(6):3199-3209. PubMed ID: 36864278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of a degradable magnesium phosphate bone cement.
    Yu Y; Xu C; Dai H
    Regen Biomater; 2016 Dec; 3(4):231-7. PubMed ID: 27482465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the properties of magnesium phosphate-based bone cements: Effect of powder to liquid ratio and aqueous solution concentration.
    Gelli R; Mati L; Ridi F; Baglioni P
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():248-255. PubMed ID: 30573247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Vivo Degradation Behavior and Osseointegration of 3D Powder-Printed Calcium Magnesium Phosphate Cement Scaffolds.
    Kowalewicz K; Vorndran E; Feichtner F; Waselau AC; Brueckner M; Meyer-Lindenberg A
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material.
    Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y
    J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg.
    Meenashisundaram GK; Wang N; Maskomani S; Lu S; Anantharajan SK; Dheen ST; Nai SML; Fuh JYH; Wei J
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110478. PubMed ID: 31923949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent-cast 3D printing of magnesium scaffolds.
    Dong J; Li Y; Lin P; Leeflang MA; van Asperen S; Yu K; Tümer N; Norder B; Zadpoor AA; Zhou J
    Acta Biomater; 2020 Sep; 114():497-514. PubMed ID: 32771594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.
    Seitz H; Rieder W; Irsen S; Leukers B; Tille C
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):782-8. PubMed ID: 15981173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement.
    Barralet JE; Grover LM; Gbureck U
    Biomaterials; 2004 May; 25(11):2197-203. PubMed ID: 14741635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes.
    Maazouz Y; Montufar EB; Malbert J; Espanol M; Ginebra MP
    Acta Biomater; 2017 Feb; 49():563-574. PubMed ID: 27872015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.