These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34576428)

  • 1. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated Finite Element and Cellular Automaton Approach.
    Ansari Dezfoli AR; Lo YL; Raza MM
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting.
    Dezfoli ARA; Lo YL; Raza MM
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Texture and Microstructural Features at Different Length Scales in Inconel 718 Produced by Selective Laser Melting.
    Calandri M; Yin S; Aldwell B; Calignano F; Lupoi R; Ugues D
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Role of ZrN Particles in the Microstructural Development in a Beta Titanium Alloy Processed by Laser Powder Bed Fusion.
    Chen X; Qiu C
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation Between Microstructure and Tensile Properties of STS 316L and Inconel 718 Fabricated by Selective Laser Melting (SLM).
    Lee J; Lee M; Jung ID; Choe J; Yu JH; Kim S; Sung H
    J Nanosci Nanotechnol; 2020 Nov; 20(11):6807-6814. PubMed ID: 32604518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches.
    Ansari MJ; Nguyen DS; Park HS
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Layer-Wise Varying Parameters on the Microstructure and Soundness of Selective Laser Melted INCONEL 718 Alloy.
    Wang X; Kang J; Wang T; Wu P; Feng T; Zheng L
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31284460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Grain Formation by Constitutional Undercooling Due to Remelting of Segregated Microstructures during Powder Bed Fusion.
    Rausch AM; Gotterbarm MR; Pistor J; Markl M; Körner C
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33287217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Numerical Simulation of Grain Growth during Selective Laser Melting of 316L Stainless Steel.
    Xu F; Xiong F; Li MJ; Lian Y
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Hatch Spacing on Melt Pool and As-built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches.
    Dong Z; Liu Y; Wen W; Ge J; Liang J
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30586893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination and controlling of grain structure of metals after laser incidence: Theoretical approach.
    Dezfoli AR; Hwang WS; Huang WC; Tsai TW
    Sci Rep; 2017 Jan; 7():41527. PubMed ID: 28134347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the Solution Temperature on the Precipitates and Grain Evolution of IN718 Fabricated by Laser Additive Manufacturing.
    Cao Y; Bai P; Liu F; Hou X; Guo Y
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31940775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Analysis of Laser Additive Manufacturing of High Layer Thickness Pure Ti and Inconel 718 Alloy Materials Using Finite Element Method.
    Singh SN; Chowdhury S; Nirsanametla Y; Deepati AK; Prakash C; Singh S; Wu LY; Zheng HY; Pruncu C
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoscopic Simulation of Core-Shell Composite Powder Materials by Selective Laser Melting.
    Bao T; Tan Y; Xu Y
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Modeling of the Solidification Structure Evolution and of the Inter Layer/Track Voids Formation in Metallic Alloys Processed by Powder Bed Fusion Additive Manufacturing.
    Nastac L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Homogenization and Solution Treatments Time on the Microstructure and Hardness of Inconel 718 Fabricated by Laser Powder Bed Fusion Process.
    Fayed EM; Shahriari D; Saadati M; Brailovski V; Jahazi M; Medraj M
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32516909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy.
    Shen H; Yan J; Niu X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Built Direction and Deformation Temperature on the Grain Refinement of 3D Printed AlSi10Mg Alloy Processed by Equal Channel Angular Pressing (ECAP).
    Snopiński P; Matus K; Hilšer O; Rusz S
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Zirconium and Yttrium Addition on the Microstructure and Hardness of AlCuMgMn Alloy when Applying In Situ Heating during the Laser Melting Process.
    Khalil AM; Pozdniakov AV; Solonin AN; Mahmoud TS; Alshah M; Mosleh AO
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on the Thermal Behaviour of a Selectively Laser Melted Aluminium Alloy: Simulation and Experiment.
    Li Z; Li BQ; Bai P; Liu B; Wang Y
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29987242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.