These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34576627)

  • 21. Comparing Properties of Concrete Containing Electric Arc Furnace Slag and Granulated Blast Furnace Slag.
    Lee JY; Choi JS; Yuan TF; Yoon YS; Mitchell D
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydration and Microstructure of Steel Slag as Cementitious Material and Fine Aggregate in Mortar.
    Jing W; Jiang J; Ding S; Duan P
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32998378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete.
    Akçaözoğlu S; Atiş CD; Akçaözoğlu K
    Waste Manag; 2010 Feb; 30(2):285-90. PubMed ID: 19853433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in Rheological Properties of Mortars with Steel Slags and Steel Fibers by Magnetic Field.
    Kang D; Moon D; Kim W
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fracture Properties and Softening Curves of Steel Fiber-Reinforced Slag-Based Geopolymer Mortar and Concrete.
    Ding Y; Bai YL
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30111757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental protection by using waste copper slag as a coarse aggregate in self-compacting concrete.
    Sharifi Y; Afshoon I; Asad-Abadi S; Aslani F
    J Environ Manage; 2020 Oct; 271():111013. PubMed ID: 32778296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Pre-Wetted High Titanium Heavy Slag Aggregate in Cement Concrete.
    Zhang T; Huang B
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Steel Slag Aggregate on Pavement and Flame-Retardant Performance of Warm-Mixed Flame-Retardant Asphalt Concrete.
    Ren Y; Chen M; Yang T; Wu S; Wang K
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33573091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strength Properties of Sustainable Mortar Containing Waste Steel Slag and Waste Clay Brick: Effect of Temperature.
    Miah MJ; Paul SC; Babafemi AJ; Panda B
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33921989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaching characteristics of steel slag components and their application in cementitious property prediction.
    Li Z; Zhao S; Zhao X; He T
    J Hazard Mater; 2012 Jan; 199-200():448-52. PubMed ID: 22088502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate.
    Sekaran A; Palaniswamy M; Balaraju S
    ScientificWorldJournal; 2015; 2015():972567. PubMed ID: 26421315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A New Environmentally Friendly Mortar from Cement, Waste Marble and Nano Iron Slag as Radiation Shielding.
    El-Khatib AM; Abbas MI; Elzaher MA; Anas M; El Moniem MSA; Montasar M; Ellithy E; Alabsy MT
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.
    Lee HK; Kim HK; Hwang EA
    Waste Manag; 2010 Feb; 30(2):274-84. PubMed ID: 19910181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerating the Reaction Kinetics of Na
    Wang H; Wang L; Xu Y; Cao K; Ge Y; Wang X; Li Q
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control.
    Kamseu E; Lancellotti I; Sglavo VM; Modolo L; Leonelli C
    Materials (Basel); 2016 May; 9(6):. PubMed ID: 28773529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the Effect of Recycled Polypropylene as Fine Aggregate Replacement on the Strength Performance and Chloride Penetration of Mortars.
    Alrshoudi F; Abdus Samad U; Alothman OY
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Properties of Concrete Using Treated Low-Class Recycled Coarse Aggregate and Blast Furnace Slag Sand.
    Miyazaki Y; Watanabe T; Yamada Y; Hashimoto C
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32069795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength.
    Faraone N; Tonello G; Furlani E; Maschio S
    Chemosphere; 2009 Nov; 77(8):1152-6. PubMed ID: 19740511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blasted copper slag as fine aggregate in Portland cement concrete.
    Dos Anjos MAG; Sales ATC; Andrade N
    J Environ Manage; 2017 Jul; 196():607-613. PubMed ID: 28355593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating Cement Treated Aggregate Base Containing Steel Slag: Mechanical Properties, Volume Stability and Environmental Impacts.
    Huang Y; Yang X; Wang S; Liu Z; Liu L; Xu B
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.