These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34576656)

  • 1. From Machining Chips to Raw Material for Powder Metallurgy-A Review.
    Batista CD; Fernandes AAMDNP; Vieira MTF; Emadinia O
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review.
    Wei LK; Abd Rahim SZ; Al Bakri Abdullah MM; Yin ATM; Ghazali MF; Omar MF; Nemeș O; Sandu AV; Vizureanu P; Abdellah AE
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Powder Metallurgy Technologies.
    Novák P
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32276532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on solid-state recycling of aluminum machining chips and their morphology effect on recycled part quality.
    Altharan YM; Shamsudin S; Al-Alimi S; Saif Y; Zhou W
    Heliyon; 2024 Jul; 10(14):e34433. PubMed ID: 39149043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between the Size and Inner Structure of Particles of Virgin and Re-Used MS1 Maraging Steel Powder for Additive Manufacturing.
    Opatová K; Zetková I; Kučerová L
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparative Evaluation of Powder Characteristics of Recycled Material from Bronze Grinding Chips for Additive Manufacturing.
    Uhlmann E; Polte J; Fasselt JM; Müller V; Klötzer-Freese C; Kleba-Ehrhardt R; Biegler M; Rethmeier M
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the use of an infrared spectrum hyperpixel array imager to measure temperature during additive and subtractive manufacturing.
    Whitenton E; Heigel J; Lane B; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 9861():. PubMed ID: 32116403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-Dependent Structural Properties of a High-Nb TiAl Alloy Powder.
    Liu B; Wang M; Du Y; Li J
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy modeling and eco impact evaluation in direct metal laser sintering hybrid milling.
    Ahmad N; Enemuoh EU
    Heliyon; 2020 Jan; 6(1):e03168. PubMed ID: 31970300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Metallic Powder Characteristics on Extruded Feedstock Performance for Indirect Additive Manufacturing.
    Santos C; Gatões D; Cerejo F; Vieira MT
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Metal Powders Used for Additive Manufacturing.
    Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA
    J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Recycling of WC-Co Grinding Chip.
    Pacini A; Lupi F; Rossi A; Seggiani M; Lanzetta M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing.
    Żrodowski Ł; Wróblewski R; Choma T; Morończyk B; Ostrysz M; Leonowicz M; Łacisz W; Błyskun P; Wróbel JS; Cieślak G; Wysocki B; Żrodowski C; Pomian K
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34068424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.
    Čapek J; Vojtěch D
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():21-8. PubMed ID: 24411347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibratory Powder Feeding for Powder Bed Additive Manufacturing Using Water and Gas Atomized Metal Powders.
    Sinclair CW; Edinger R; Sparling W; Molavi-Kakhki A; Labrecque C
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of in vitro and in vivo biocompatibility of iron produced by powder metallurgy.
    Paim TC; Wermuth DP; Bertaco I; Zanatelli C; Naasani LIS; Slaviero M; Driemeier D; Schaeffer L; Wink MR
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111129. PubMed ID: 32600726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete Element Modeling of Intermetallic Matrix Composite Manufacturing by Powder Metallurgy.
    Nosewicz S; Rojek J; Chmielewski M; Pietrzak K
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30654507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision micro-milling process: state of the art.
    O'Toole L; Kang CW; Fang FZ
    Adv Manuf; 2021; 9(2):173-205. PubMed ID: 34777895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption.
    Watson JK; Taminger KMB
    J Clean Prod; 2015 Dec; 176():1316-1322. PubMed ID: 31534306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Composite Powder Feedstock from Powder Bed Fusion Additive Manufacturing Perspective.
    Fereiduni E; Ghasemi A; Elbestawi M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.