These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34576732)

  • 1. Deciphering the Dynamics of Signaling Cascades and Virulence Factors of
    Escobar-Niño A; Morano Bermejo IM; Carrasco Reinado R; Fernandez-Acero FJ
    Microorganisms; 2021 Aug; 9(9):. PubMed ID: 34576732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoproteome analysis of B. cinerea in response to different plant-based elicitors.
    Liñeiro E; Chiva C; Cantoral JM; Sabido E; Fernández-Acero FJ
    J Proteomics; 2016 Apr; 139():84-94. PubMed ID: 27003611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications of fungal membrane proteins profile under pathogenicity induction: A proteomic analysis of Botrytis cinerea membranome.
    Liñeiro E; Chiva C; Cantoral JM; Sabidó E; Fernández-Acero FJ
    Proteomics; 2016 Sep; 16(17):2363-76. PubMed ID: 27329576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Adaptation of
    Escobar-Niño A; Harzen A; Stolze SC; Nakagami H; Fernández-Acero FJ
    J Fungi (Basel); 2023 Aug; 9(9):. PubMed ID: 37754980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dataset of the
    Liñeiro E; Chiva C; Cantoral JM; Sabido E; Fernández-Acero FJ
    Data Brief; 2016 Jun; 7():1447-1450. PubMed ID: 27761508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca
    Kilani J; Davanture M; Simon A; Zivy M; Fillinger S
    J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation.
    Escobar-Niño A; Liñeiro E; Amil F; Carrasco R; Chiva C; Fuentes C; Blanco-Ulate B; Cantoral Fernández JM; Sabidó E; Fernández-Acero FJ
    Sci Rep; 2019 Jul; 9(1):9860. PubMed ID: 31285484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors.
    Fernández-Acero FJ; Colby T; Harzen A; Carbú M; Wieneke U; Cantoral JM; Schmidt J
    Proteomics; 2010 Jun; 10(12):2270-80. PubMed ID: 20376862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in
    Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling the Initial Triggers of
    Escobar-Niño A; Carrasco-Reinado R; Morano IM; Cantoral JM; Fernandez-Acero FJ
    J Fungi (Basel); 2021 Nov; 7(12):. PubMed ID: 34947003
    [No Abstract]   [Full Text] [Related]  

  • 11. Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation.
    Fernández-Acero FJ; Colby T; Harzen A; Cantoral JM; Schmidt J
    Proteomics; 2009 May; 9(10):2892-902. PubMed ID: 19415670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Autophagy Gene
    Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Reboledo G; Agorio A; Vignale L; Batista-García RA; Ponce De León I
    J Fungi (Basel); 2020 Dec; 7(1):. PubMed ID: 33379257
    [No Abstract]   [Full Text] [Related]  

  • 14. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment.
    Castillo L; Plaza V; Larrondo LF; Canessa P
    Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis.
    Li B; Wang W; Zong Y; Qin G; Tian S
    J Proteome Res; 2012 Aug; 11(8):4249-60. PubMed ID: 22746291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts.
    González-Fernández R; Valero-Galván J; Gómez-Gálvez FJ; Jorrín-Novo JV
    Front Plant Sci; 2015; 6():839. PubMed ID: 26500673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research.
    Fernández-Acero FJ; Jorge I; Calvo E; Vallejo I; Carbú M; Camafeita E; Garrido C; López JA; Jorrin J; Cantoral JM
    Arch Microbiol; 2007 Mar; 187(3):207-15. PubMed ID: 17124592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus
    Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host-induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould.
    Xiong F; Liu M; Zhuo F; Yin H; Deng K; Feng S; Liu Y; Luo X; Feng L; Zhang S; Li Z; Ren M
    Mol Plant Pathol; 2019 Dec; 20(12):1722-1739. PubMed ID: 31622007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture.
    Shah P; Gutierrez-Sanchez G; Orlando R; Bergmann C
    Proteomics; 2009 Jun; 9(11):3126-35. PubMed ID: 19526562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.